ENGR7019 Engineering Dissertation Project Final Report

Development of Dynamic FE code in MATLAB
(for planar quad elements)

by
Marcela Alessandra Vazquez Pérez
19193557

MSc MOTORSPORT ENGINEERING
Module: Dissertation
Academic year: 2023

Main Part | Appendix
6,833 3,304
Main Part | Appendix
11 0

‘Word count

Number of illustrations

OXFORD

BROOKES

UNIVERSITY

School of Engineering, Computing and Mathematics
Oxford Brookes University

Statement of originality

Except for those parts in which it is explicitly stated to the contrary, this project is my own work. It has not
been submitted for any degree at this or any other academic or professional institution.

Signature of Author Date

Regulations Governing the Deposit and Use of Master of Science Dissertations in the School
of Engineering, computing and Mathematics,

Oxford Brookes University.

1. The ‘top’ copies of projects submitted in fulfilment of Master of Science course requirements shall
normally be kept by the Department.

2. The author shall sign a declaration agreeing that, at the supervisor’s discretion, the dissertation may
be submitted in electronic form to any plagiarism checking service or tool.

3. The author shall sign a declaration agreeing that the dissertation be available for reading and copying in
any form at the discretion of either the project supervisor or in their absence the Head of Postgraduate
Programmes, in accordance with 5 below.

4. The project supervisor shall safeguard the interests of the author by requiring persons who consult the
dissertation to sign a declaration acknowledging the author’s copyright.

5. Permission for anyone other than the author to reproduce in any form or photocopy any part of the
dissertation must be obtained from the project supervisor, or in their absence the Head of Postgraduate
Programmes, who will give his/her permission for such reproduction only to the extent which he/she
considers to be fair and reasonable.

I agree that this dissertation may be submitted in electronic form to any plagiarism checking service or tool
at the discretion of my project supervisor in accordance with regulation 2 above.

I agree that this dissertation may be available for reading and photocopying at the discretion of my project
supervisor or the Head of Postgraduate Programmes in accordance with regulation 5 above.

Signature of Author Date

Abstract

In the present research, a solid MATLAB-based method for dynamic finite element analysis with an inter-
active interface for structural problems is presented. The process is started by the user providing important
parameters including element and node counts, material properties, and nodal positions. The behaviour of
an element is defined by natural shape functions, which results in the numerical calculation of the strain
displacement matrix. This code accurately calculates the element stiffness matrix for each element while
taking into account conditions of plane stress or plane strain. Then the creation of a global stiffness matrix
through matrix assembly is performed which was the main challenge.

Then boundary conditions are also provided by the user and are applied to the vectors U and F, after which the
matrix is solved by partitioning and Gaussian elimination to identify unknown displacements and reactions.
Stress vectors are recovered during post-processing for each element, making it easier to calculate principal
stresses and angles. Validation was completed comparing the results given by the code with specialized books
who had problems and answers already developed.

The successful completion of this project places the code as a great teaching tool for students and teachers
wishing to study or teach the Finite Element Method (FEM), providing practical insights into structural
problem-solving.

Highlights

e This effectiveness highlights MATLAB’s efficacy as a programming environment for finite element
method implementations.

e Offering a user-friendly interface for inputting problem parameters in Finite Element Method (FEM)
is extremely beneficial in guiding students.

e The successful application of Gaussian integration to improve dynamic analysis accuracy. This not only
demonstrates the project’s sophisticated skills, but also its potential for precisely tackling complicated
real-world structural challenges.

e The incorporation of several numerical calculations into a single comprehensive code to make it more
accessible and user-friendly for both students and engineers.

Table of Contents of Main Part

Abstract
Highlights
1 Introduction
1.1 Concise background information, the project aim and objectives
1.2 Summary of literature review L
1.2.1 Introduction e e
1.2.2 Main Body
1.2.3 Conclusion e
1.3 Originality and Contribution
1.4 Theapproach e
2 Finite Element Analysis Methodology
2.1 Flow Chart o e
2.2 Schematic arrangement of the system being analyzed L.
2.3 Justification for the methods used
2.3.1 Method Selection
2.3.2 Finite Element Method (FEM)
2.3.3 MATLAB Programming
2.3.4 Relevance e
2.3.5 Availability of Resources
2.3.6 Method Validation
2.3.7 Conclusion e
2.4 Important mathematical expressions used L.
2.5 Table of input parameters
2.6 Table of alternative approaches
2.7 Table of limitations L e e e

3 Results and discussion

3.1 Results. o e
3.1.1 Problem 1 e
3.1.2 Problem 2 L

3.2 Discussion e e
3.2.1 Code Development and Unification
3.2.2 Flexibility and Efficiency in Computational Methods
3.2.3 The code’s accessibility and educational value
3.2.4 Combining Various Methodologies
3.2.5 Conclusion

4 Discussion and future work
References

A Appendix - Code

12
12
14
15
15
16
16
16
16
17
17
17
19
20
21

22
22
22
24
28
29
29
29
30
30

31

32

34

List of Figures of Main part

=W N =

Prompts for user inputs at the beginning of the code 13
Prompts for boundary conditions for the number of nodes given by the user 13
Prompt user for the rows and columns to extract submatrix 14

Schematic diagram of the quadrilateral element (a) Quadrilateral master/parent element in

&n-plane (left). (b) Quadrilateral element in xy-plane (right). 15
4 Node Bilinear Quadrilateral L 15
Thin plate for problem 1 22
Discretization of Thin plate for problem 1 using two bilinear quadrilaterals 22
Global stiffness matrix for problem 1 Lo 23
Thin Plate with a Distributed Load and a Concentrated Load for problem 2 25
Discretization of Thin Plate Using Three Bilinear Quadrilaterals Elements for problem 2 . . . 25
Global stiffness matrix for problem 2o 26

List of Tables of Main part

S U W N =

Input Parameters L e 19
Nodal coordinates in the parametric element domain (Fish & Belytschko 2007) 19
Table of alternative approaches oo 20
Table of limitations 21
Element connectivityo 23
Element connectivity 25

List of Symbols and Abbreviations

n Natural coordinates
[B] Strain Displacement Matrix
[D] Material Matrix

(K] Global Stiffness Matrix

o Plane Stress

Try Shearing stress acting in the direction of the x axis on a surface perpendicular to the y axis
v Poisson’s ratio

€ Plane Strain

£ Natural coordinates

E Young’s modulus

t Element Thickness

1 Introduction

1.1 Concise background information, the project aim and objectives

The aim of this project is to develop an interactive interface that allows users to provide material properties,
specify input loads, and determine if the problem refers to either plane stress or plane strain. The code will

then solve for strains and stresses within the structure.
Objectives:

1. Create a MATLAB program that uses natural shape functions to determine the stiffness matrix for a

single planar quadrilateral element.

2. Create a global stiffness matrix by combining the stiffness matrices and extending the MATLAB method

to solve for two elements initially.

3. Improve the accuracy of the dynamic analysis code by using numerical integration techniques like

Gaussian integration.

4. Create a user-friendly interactive interface for mid-level users to make it easier to utilize the code as a

teaching tool for finite element analysis.

5. Create code documentation.

1.2 Summary of literature review
1.2.1 Introduction

The development of dynamic finite element algorithms for planar quadrilateral elements has received substan-
tial interest in recent years due to its vast applications in structural analysis and design. These algorithms
strive to provide accurate predictions of strains and stresses in various engineering materials under dynamic
loading situations. One critical feature of such codes is their ability to handle both plane stress and plane
strain problems effectively. This literature review delves into the notions of background of FEM, plane stress
and strain, the formulation of the stiffness matrix, and the significance of four-node quadrilateral elements

in dynamic finite element analysis.

1.2.2 Main Body

Our environment is more complicated than what the human mind can process in a single effort. Therefore,
complicated systems are broken down into their individual components or more manageable subdomains
called elements, whose behaviours are simpler to understand. The original system can then be recreated
using these components, allowing one to investigate and analyse its general behaviour. This approach makes
it possible to explore complex systems in a way that is more intuitive and effective, promoting perceptive
comprehension and well-informed decision making (Zienkiewicz et al. 2013). The Finite Element Analysis
(FEA) is an effective computational technique that uses the Finite Element Method (FEM) to solve challeng-
ing engineering systems (Simon-Marinica, Adrian Bogdan et al. 2021). The FEM uses Partial Differential
Equations (PDEs) to analyze finite elements in any given phenomenon (Obumneme et al. 2022). With this
approach, the system is discretized into a set of smaller, manageable components and the equations of motion
for each of these components are then solved. These equations are then combined to give a solution for the

entire system.

The origins of FEM can be dated back to the mid-twentieth century. The works of Hrennikoff (1941), Courant
(1943), Argyris & Kelsey (1954), Turner et al. (1956), Clough (1960) and Zienkiewicz (1977), highlight
significant aspects of the FEM and are considered important in the development thereof. The term “finite
element” was first used by Ray W. Clough (Selleri 2022). The contributions of these pioneering academics
established the framework for the development and widespread use of the FEM, which has since evolved into
a versatile and powerful tool for tackling complex engineering problems across multiple disciplines. The main
principle behind the finite element approach is to identify an approximate solution to any complex real-life

engineering problem by replacing it with a simpler one (Rao 2018).

The 4-node quadrilateral was first created by Argyris in 1954 as a rectangular panel with reinforced edges.
Taig & Kerr (1964) published a conforming generalisation to arbitrary geometry using quadrilateral-fitted
coordinates already denoted as £ , 7, but running from 0 to 1. Quadrilateral elements are a type of planar
element used in FEA. These elements are isoparametric, which means they can have curved boundaries and
offer more flexibility. In terms of meshing and accuracy, bilinear quadrilateral elements are thought to be

superior to straightforward linear triangular elements in 2-dimensional analysis (Perumal & Mon 2011).

The element stiffness matrix contains all of a finite element’s essential properties. For a structural finite
element, the stiffness matrix holds the geometric and material behaviour details that show the element’s
resistance to deformation under loading (Hutton 2004). It connects nodal forces to displacements and takes
on a different shape depending on the number of degrees of freedom for the element in question (Rees 1997).
We are taking into account a quadrilateral element that is defined by four nodes in natural coordinates
(&,m) and we are also considering natural shape functions. These shape functions can be used to determine
the stiffness matrix for the element, as well as to interpolate the nodal values within the element. Natural
coordinates make identifying the element stiffness matrix and putting together the global element matrix

easier (Ferreira 2008).

Two fundamental presumptions used in structural analysis to reduce the complexity of three-dimensional
problems are plane stress and plane strain. The plane stress problems are those of thin plates loaded over
their lateral boundaries by tractions that are uniform across the plate’s thickness or symmetric with respect
to its mid-plane z = 0. On the other hand, the plane strain problems involve long cylindrical bodies with
homogeneous cross sections that are loaded by tractions which are orthogonal to the body’s longitudinal (z)
axis and for each cross section z = const (Lubarda & Lubarda 2020). These assumptions allow for more

efficient and simpler dynamic load analysis of structures.

There is a scarcity of research or material addressing the construction of a dynamic finite element code in
MATLAB for planar quad elements with the precise features and aims mentioned in this project. While
there may be existing literature on the subject, it is possible that the combination of elements such as
an interactive interface, user-defined material properties and loads, and consideration of plane stress or
plane strain concerns has not been substantially researched or recorded. As a result, the research and
development of a dynamic finite element code that incorporates these specific features and objectives in the
context of planar quad elements is required to close the knowledge gap. This may entail researching and
developing appropriate algorithms, data structures, and numerical approaches to handle dynamic analysis,
user interaction, and the needed features. The advantage with MATLAB is that the extensive mathematical
and graphical functionalities eliminate the need to create these functions from scratch or look for appropriate
pre-existing libraries. Due to this, even very straightforward two-dimensional finite element programs in
MATLAB can be effectively stated in a few hundred lines of code, as opposed to the possibly thousands of

lines needed in languages like Fortran or C++.

Furthermore, comparing the performance, accuracy, and efficiency of the produced code to existing commer-

cial software or analytical solutions will help to close this knowledge gap.

1.2.3 Conclusion

In conclusion, reliable strain and stress predictions in engineering materials under dynamic loading circum-
stances depend greatly on the development of dynamic finite element codes for planar quad elements. The
above review of the literature has given a general overview of the assumptions relating to plane stress and
strain, the creation of the stiffness matrix, and the relevance of planar quad elements in dynamic finite ele-
ment analysis. For a dynamic finite element code to be successfully implemented and be able to handle issues

involving both plane stress and plane strain, it is essential to comprehend these ideas.

By undertaking this project, I have the opportunity to contribute new perspectives, innovative approaches,
and feasible solutions to the field of dynamic finite element analysis for planar quad elements, reducing the
knowledge gap that currently exists and perhaps even enhancing the capabilities of finite element analysis

software in this particular area.

1.3 Originality and Contribution

This research project makes an important contribution to the field of Finite Element Analysis (FEA), notably
in the context of dynamic analysis for planar quad elements. My supervisor laid the groundwork for the
project by developing a code capable of generating the stiffness matrix for a single element. However, the

challenge of extending this capability to additional elements remained unknown territory.

This project’s key innovation is in successfully overcoming this obstacle. I improved the first code to handle
many elements concurrently, which greatly improves its practical utility. By doing so, I enabled engineers and
academics to study complicated systems more accurately and efficiently, which was previously unavailable in

the literature.

Furthermore, my efforts extended beyond code development. Recognizing the need for user-friendly educa-
tional tools in the field of FEA, I turned the code into an interactive interface. Students and practitioners
can use this interface to enter system parameters, define material properties, provide loads, and differentiate
between plane stress and plane strain conditions. The stiffness matrix for each element is then generated, the
global stiffness matrix is assembled, boundary conditions are applied, and strains and stresses are computed.
This instructional tool not only helps students grasp the fundamentals of FEA, but it also simplifies the

actual application of dynamic analysis.

1.4 The approach

The successful implementation of the project’s objectives needed an organized and systematic strategy that
included both code development and user interface design. The following section provides a quick description

of the tactics and methodologies used to attain each objective:

Objective 1: Create a MATLAB program for a single element stiffness matrix: To achieve the
first objective, a MATLAB program was meticulously constructed to compute the stiffness matrix for a single
planar quadrilateral element. The method involved the use of natural shape functions, which allowed for the
precise estimation of the stiffness matrix of the element. The basis for all later goals was laid in this first

step.

10

Objective 2: Create a Global Stiffness Matrix for Multiple Elements: The next goal was to design a
process for assembling a global stiffness matrix, building on the success of the single element stiffness matrix.
This was accomplished by extending the MATLAB program to handle several elements. Individual element
stiffness matrices were combined to provide a full global stiffness matrix, which is required for dynamic finite

element analysis.

Objective 3: Improve Accuracy Using Numerical Integration Techniques: In FEM, numerical
integration is widely used. To improve the accuracy of the dynamic analysis code, numerical integration
techniques, particularly Gaussian integration, were used. These strategies were added into the code to
execute integration over the element domain. This process considerably enhanced the precision of strain and

stress estimates, resulting in reliable data for engineering analysis.

Objective 4: Create a User-Friendly Interactive Interface: An interactive interface was created
because it was crucial to have tools that were easy to use for instruction and practical use. Mid-level users
can interactively input system parameters, specify loads, define material attributes, and decide between

conditions for plane stress and plane strain thanks to this user-friendly interface.

Objective 5: Documentation: Creating documentation that not only assists users in using the code but
also educates them on the underlying processes. This dual-purpose documentation seeks to provide users
with the information and skills needed to utilize the code for engineering analysis while also developing a

greater understanding of finite element analysis’s complexities.

11

2 Finite Element Analysis Methodology

2.1 Flow Chart

‘ Activity starts ’

!

/ Input number of elements and number of nodes /
/ Input material properties and coordinate positions /

Plane Strain —— < Type of plane analysis >»——— Plane Stress

!

LDefine shape functions}

'

LFind strain displacement matrix (B)}

v

{Solve for the element stiffness matrix}

€z:’}/zy:’yyz:0
v

[Assemble Global Stiffness Matrix}

'

[Apply boundary conditions}

!

Solve the system of equations
by partitioning and Gaussian Elimination

!

Post-processing: Get reactions and
stresses in each element

!

LCalculate principal stresses and}

principal angle for each element

!

[Define shape functions}

'

LFind strain displacement matrix (B)}

v

LSolve for the element stiffness matrix}

07 =Ty =Ty, =0

v

LAssemble Global Stiffness Matrix}

'

LAppIy boundary conditions}

!

Solve the system of equations
by partitioning and Gaussian Elimination

!

[Post—processing: Get reactions and}

stresses in each element

!

LCaIcuIate principal stresses and}

principal angle for each element

12

The flowchart above describes the methodical approach taken to develop a dynamic Finite Element Analysis

code specifically designed for planar quadrilateral elements. With the help of this code, structural behavior

under dynamic loading situations can be precisely predicted. The flowchart provides a concise, step-by-step

picture of the code’s execution for both Plane Stress and Plane Strain analyses based on the user’s inputs.

O Input

Enter the number of elements:

Enter the number of nodes:

-

[] Input

Enter young's modulus value for element 1
210e6]

Enter poisson's ratio for element 1
0.3

Enter element thickness for element 1

) oo

What type of problem is it? (Plane Stress
or Plane Strain) for element 1
Plane Stress

Enter the coordinate positions for
element 1:

0;0;0.25;0;0.25;0.25;0;0.25

- -

@ Input

Enter the node numbers (j, j, m, n) for

- ‘elemem:
|

- -

Figure 1: Prompts for user inputs at the beginning of the code

[] Input [] Input
Enter U1x: Enter U2x :

U1x U2y

Enter Uty : Enter U2y :

Uty U2y

Enter F1x: Enter F2x :

Fix F2x

Enter F1y : Enter F2y :

Fly F2y

- - - -

Figure 2: Prompts for boundary conditions for the number of nodes given by the user

13

@® Enter Row and Column Indices

Enter rows (e.g., 3:6,9:12):

3:6,9:12
- Cancel
O Enter Row and Column Indices
Enter columns (e.g., 3:6,9:12):
3:6,9:12
- o

Figure 3: Prompt user for the rows and columns to extract submatrix

1. Input parameters: The user starts the process by specifying the number of elements and nodes, as well

as the properties of the material and coordinate positions as shown in Figure 1.
2. Shape Function Definition: Natural shape functions are used to describe the behavior of the elements

3. The strain displacement matrix (B) is calculated by the code to link strains to displacements within

the element.

4. Element Stiffness Matrix: The code solves the element stiffness matrix while taking plane stress or

plane strain conditions into account.
5. Matrix Assembly: The component stiffness matrices are combined to form a global stiffness matrix.
6. Applying the boundary conditions to the vectors U and F.

7. Solve equations: The matrix will be solved by partitioning the global stiffness matrix and Gaussian

elimination to find unknown displacements and reactions.

8. Post-processing: The stress vector is obtained for each element and with that we can get the principal

stresses and angle for each element.

2.2 Schematic arrangement of the system being analyzed

A schematic diagram of the quadrilateral element is shown in Figure 4 (Qianwei et al. 2019). Nodal points
are labelled in an anticlockwise direction and in ascending order. The global coordinates of the four nodes
are given by (x1,y1), (x2,¥2), (z3,¥3), (z4,y4) and can be seen in Figure 4b. Local coordinates are used to
define element interpolation functions that meet special continuity requirements that may not be met by
global coordinate interpolation (Akin 1994). The element is mapped to a rectangle through the use of the

natural coordinates £ and 7 as shown in Figure 4a (Kattan 2008)

14

1 77 A y
(-1,1) (11) 4
4 3 o) 3

hj(xp}@)

1
(X, ,) 2
hy(x5,,)

1 2
(=L-1) (1,-1) .

Figure 4: Schematic diagram of the quadrilateral element (a) Quadrilateral master/parent element in &n-
plane (left). (b) Quadrilateral element in xy-plane (right).

Figure 5: 4 Node Bilinear Quadrilateral

2.3 Justification for the methods used

In this section, a thorough justification for the approaches and techniques used in the construction of the
dynamic finite element algorithm for planar quadrilateral components using MATLAB is presented. The

methodology employed and its relevance to the research objectives is fully addressed.

2.3.1 Method Selection

The creation of this code needs careful consideration of the methodologies utilized for modeling, analysis,
and implementation. An increasing number of engineering applications use mathematical models. Various
models are designed in the field of Elasticity Theory to analyze the behavior of structures in terms of forces,
deformations, and displacements. One-dimensional, two-dimensional, or three-dimensional problem scenarios
can all be addressed using these models. In this project our focus is in the two-dimensional problems where
partial differential equations are used. The difficulty of solving the established model arises as a result of
the attempt to build a model to understand a particular physical occurrence, emphasizing the crucial role of
differential equations in this quest for understanding and resolution. Analytical and/or numerical methods
of resolution are both possible. The Finite Element Method stands out among the other numerical methods
for the scenario stated (Reis & Junior 2018). This method was chosen based on its suitability for fulfilling

the research objectives:

15

2.3.2 Finite Element Method (FEM)

For modeling and simulating structural behavior, the FEM was chosen as the fundamental technique. The
power of the FEM as a numerical analysis tool can be emphasised because with it, it is possible to simulate
physical issues with more complicated boundary conditions. It is a well-known engineering approach, and
its ability to handle complex geometries is one of its greatest advantages. FEM has the ability to accu-
rately estimate solutions to partial differential equations, making it an excellent choice for dynamic analysis.
Furthermore, it may be used to solve complicated problems in science and engineering, demonstrating its

adaptability and usefulness (Buchanan 1995).

2.3.3 MATLAB Programming

The programming environment was chosen because of MATLAB’s adaptability and robust support for nu-
merical computing. For the purpose of implementing the FEM, MATLAB offers a sizable library of functions
for matrix operations, linear algebra, and optimization. In this particular case, the use of MATLAB Symbolic
Math Toolbox, has proven to be a valuable asset in the development of the code for this dissertation project.
The integration of the MATLAB Symbolic Math Toolbox proves to be extremely beneficial, providing a
wide variety of benefits that reach far beyond the scope of simple computation. This computational tool
is an essential component in both teaching and learning techniques, allowing for a deeper understanding
of complicated mathematical concepts. It enables us to effortlessly switch between symbolic and numerical
computation, greatly lowering the laborious load of manual calculations. By utilizing MATLAB’s features, we
can shift our attention to important areas of our research, like figuring out the complex connections between
mathematical models and their counterparts in the real world. MATLAB not only simplifies the computa-
tional process, but it also allows us to go deeper into the core ideas and concepts underlying our dissertation,

thereby improving the rigorousness and accuracy of our study (Ortigoza & Ponce De La Cruz Herrera 2023).

2.3.4 Relevance

The development of this code is especially important given the absence of comprehensive educational resources
for cultivating an adequate knowledge of the Finite Element Method. Students may find FEM challenging
since it frequently requires a strong mathematical foundation, especially when they face FEA and FEM
modules. Many people have trouble remembering linear algebra concepts or understanding the abstract
nature and importance of the equations. This instructional tool fills in this knowledge gap by offering an
approachable framework for understanding the complexities of FEM. Despite the abundance of study and
publications on this topic, existing codes in MATLAB and other programming languages are frequently
dispersed and difficult to understand. As a result, the main goal here is to simplify the learning process and
encourage a deeper comprehension of FEM principles, making them more accessible to both students and

researchers.

2.3.5 Availability of Resources

MATLAB is a great option for implementation because it is widely accessible and simple to use. Academics
and engineers can effectively utilize the code thanks to its user-friendly interface, which promotes wider

acceptance among the engineering community.

16

2.3.6 Method Validation

To verify the resilience and dependability of the generated code, the validation procedure was carefully
carried out. In addition to developing a comparative code in Python, particular problem parameters for
planar quadrilateral elements were gathered from authoritative textbooks that gave answers to these difficult
problems. The accuracy and consistency of the MATLAB and Python implementations were then evaluated
systematically against these known parameter ranges. This validation technique not only strengthens the

code’s legitimacy, but also establishes its ability to handle complex planar quad element challenges.

2.3.7 Conclusion

In conclusion, the approaches used to construct the dynamic finite element code for planar quadrilateral
components using MATLAB are well-justified. The finite element method has been chosen as the main
computational method since it is inherently relevant to this research project. A variety of complicated
problems involving forces, deformations, and structural displacements have been successfully addressed by this
highly recognized structural mechanics method. It is a great option for fulfilling the projects objectives due to
its versatility to various material models, boundary conditions, and element types. The use of the MATLAB
programming language in this project provides useful insights into FEM programming (Chessa 2002). On top
of that, the synergy between MATLAB’s large mathematical libraries and FEM’s programming capabilities
makes it the ideal mix for creating a powerful teaching tool for students. By utilizing this synergy, this
initiative advances structural analysis while also making it easier to understand the mathematical foundations

of FEM, making it relevant and approachable to the educational community.

2.4 Important mathematical expressions used

The interpolation functions for the coordinates are:

4 4
x:ZNixi; y:ZNiyi§ (1)
i=1 i=1

Since the element is isoparametric, the following equations describe the relationship between local and global
coordinate systems:
I:Nll’l +N21’2 +N3I3+N4l‘4 (2)

y = N1y1 + Nayo + N3yz + Nays (3)

The shape functions for a bilinear quadrilateral element in terms of natural coordinates given by (Kattan
2008) are:

Ni= -9 -n) @
No= {1401 1) o)
Ny= 31+ €)(1+) ()
Ni= 31— +n) (7

17

The Strain Displacement Matrix [B] is given by:

The determinant |J| is given by:

n—1 0 E+1 —€&—n
E—n —€£-1 0 n+1
1-¢ ¢&+n —m-—1 0

Where [B;] is given by:

a5E —b S 0 0
_ 5N, 5N;
[BZ] = 0 0 C on —d Y3 (10)
ON; ON; IN; IN;
chr dse age b
The parameters a,b,c, and d are given by:
1
a= (e =1)+y2(-1-8) +ys(1+&) +ya(l)] (11)
1
b= (=1 +y2(1 = n) +ys(1+7) +ya(=1 =) (12)
1
c=7[n(n—1) +z2(l —n) +23(1+n) + z4(~1 = 1)] (13)
1
d= 7 lei(€—1) +a2(-1 &) +23(1 +&) +24(1 - &)] (14)
For plane stress the matrix [D] is given by:
1 v O
E
D= — 15
=Ll 1 o (15)
1—v
00 5=
For plane strain the matrix [D] is given by:
1—v v 0
E
D=—"—7-—— — 16
Pl=Gzoa=y | v v 0 (16)
0 0 1—22u

To solve for the element stiffness matrix using natural coordinates, we must integrate the following expression:
1

W=t [[BB dedn a7)
-1J-1

where [B]7 is the transpose of the strain displacement matrix [B] and [D] is the material matrix. The strain

18

displacement matrix [B] and the Det(J)

The following structure equation results from obtaining the global stiffness matrix K:
[K]{U} = {F} (18)

where U is the global nodal displacement vector and F is the global nodal force vector. The stress vector is
produced for each element using the approach that follows after the unknown displacements and reactions
have been identified:

{o} = [D][B]{u} (19)

where o is the stress vector in the element (of size 3 x 1) and u is the 8 x 1 element displacement vector.

The vector o is written for each element as:

O
{o}=|oy (20)
Toy
2.5 Table of input parameters
Symbol Parameter
E Young’s modulus
v Poisson’s ratio Node I &5 g
t Element Thickness 1 1 -1
o 2 1 -1
E=1 & Plane Strain 3 1 1
Toy 4 -1 1
Oz Table 2: Nodal coordinates in the parametric element
o=< 0y Plane Stress domain (Fish & Belytschko 2007)
Toy

Table 1: Input Parameters

19

2.6 Table of alternative approaches

Alternative

Description

Justification of Approach

Alternative 1

Instead of using MATLAB, write

the dynamic finite element code in
Python. For this solution, it would

be necessary to investigate the Python
libraries and tools that are available
for finite element analysis and modify
the code implementation accordingly.

Python provides a variety of strong
libraries and tools for scientific
computing and numerical analysis,
allowing for flexibility and possibly
improving performance. It is very
user friendly and intuitive. It is
also open source which gives us a
wide range of libraries we can used
for the project

(Nazaruddin & Siallagan 2021).

Alternative 2

Instead of writing new code, use a
commercial finite element analysis
programme that is already available.
This method entails choosing an
appropriate software package that
supports planar quad elements and has
the required features and functionalities.

Commercial software solutions
frequently have a long history,

have undergone significant testing,

and include a wide range of capabilities
for dynamic analysis. Utilising such
software can speed up development,
provide access to cutting-edge features,
and provide technical assistance.
(Khennane 2013)

Alternative 3

Examine the viability of
implementing artificial intelligence
or machine learning methods

(Pan et al. 2021) into the dynamic
finite element code. Investigating
how these innovative techniques
might improve the analysis’s
precision, effectiveness, and
automation could potentially
create new opportunities for the
project.

The accuracy and effectiveness of
the dynamic analysis may be
improved by integrating machine
learning or Al approaches, which
can also lead to improvements in
data-driven modelling, optimisation,
and automation (Jung et al. 2022).
This alternative could be
complemented by the Alternative 1
of doing it in python.

Table 3: Table of alternative approaches

20

2.7 Table of limitations

Assumption/Limitation

Description/Impact of the assumption on outcomes

Limited to bilinear quadrilateral
elements

The project might not be suitable to problems with three
dimensions. For complex geometries or structures that
planar quad elements are unable to effectively portray,
the accuracy of the results may be affected. It is a very
specific approach to a certain problem.

Assumes linear variation
across the element

Linear variation across a bilinear quadrilateral element can be
described by the following function in terms of Cartesian
coordinate:

flx,y) = a1 + a1z + azy + aqxy

In a FE analysis, the
displacements are more
accurate than the calculated
stresses

The displacements are carefully calculated by inverting the
stiffness matrix at the nodal positions (integration points).
The shape function is used to approximate the
displacements within the elements. Because strains and
stresses are calculated from displacements, they are less
precise.

Need smaller elements to
get good stress results

If the element size is relatively large, the accuracy of the
stress results may suffer. To more properly reflect localized
stress variations, smaller elements may be needed.

Table 4: Table of limitations

21

3 Results and discussion

3.1 Results

The complete code is located in Appendix A and it is tested against problems found in (Kattan 2008) where
the results are compared to make sure they are correct.

3.1.1 Problem 1

0.25m

ANMALND
YYYVYVYY

N

~J
~1
0.5m

Figure 6: Thin plate for problem 1

6
—>» 9.375kN

0.25m

5 —>» 9.375kN

L . 3
I~) |
0.25m 0.25m

Figure 7: Discretization of Thin plate for problem 1 using two bilinear quadrilaterals

Given E = 210 GPa, v = 0.3, t = 0.025 m, and w = 3000 kN/m2 and the nodal positions of element 1 and

element 2:

T 0 T 0.25
Y1 0 Y1 0
To 0.25 To 0.5
Element1 = v = 0 Element2 = b2 = 0
x3 0.25 x3 0.5
Y3 0.25 Y3 0.25
T4 0 Ty 0.25
Ya 0.25 Y4 0.25

Determine:
1. Global stiffness matrix [K]
2. Horizontal and vertical displacements at node 3 and 6 {U}

3. The reactions at nodes 1 and 4 {F}

22

Element number Nodei Nodej Nodem Noden
1 1 2 5 4
2 2 3 6 5

Table 5: Element connectivity

4. The stresses in each element o, 0y, Ty

5. The principal stresses and principal angle for each element o1, o9, 0,

K

1.0e+06 *

Columns 1 through 2

2.5962
0.8375
-1.5865
-0.0721
o]
o]

0.288
0.0721
-1.2981
-0.8375

Columns 10

-0.8375
-1.2981

-3.1731
0.58375

-1.2981
0.0721
0.288

5.1923
-0.07z21
0.288

[I (N R

through 12

L9375
.S962
L0721

. 288

o]
o]

L0721
. 5865
L8375
L2981

L2981
L9375
.288

L0721

. 5865
L0721
.S962

0.8375

-1.5865
0.0721
5.1923

-1.5865
-0.0721
-1.2981
0.2375
0.576%9

-1.2981
-0.8375

-0.8375
-1.2981
-0.0721
-1.5865

L0721
.288
L8375
. o982

[N R s

-3.
-0.
-1.

0721

. 288

1923
0721
.288

L9375
2981

1731
Q375
2981

. 5865

0.0721

. 5962
9375

.2981
9375
.288

L0721

0721
.288

9375
.59ez

L9375
2981
0721
L5865

.288

L0721
2981
.9375

5862
L9375
. 5865
0721

Figure 8: Global stiffness matrix for problem 1

The F global nodal force vector is:

Fix
Fly
F2x
F2y
F3x
F3y
Fidx
Fdy

-9.3750
-1.9741

0.0000
0.0000
9.3750
0.0000

-9.3750

1.9741

23

0721
L5865
9375
.2981

L9375
. 5862
0721

.288

.2981
L9375
. 5768

.2881
.9375
L5865
0721
1923

.5BES
L0721

F5x = 0.0000
F5y = 0.0000
Féx = 9.3750
Féy = 0.0000

The U global nodal displacement vector is:

Ulx = 0.0000e+00
Uly = 0.0000e+00
U2x = 3.4395e-06
U2y = 6.3181e-07
U3x = 7.0300e-06
U3y = 5.0321e-07
U4x = 0.0000e+00
U4y = 0.0000e+00
USx = 3.4395e-06
USy = -6.3181e-07
U6x = 7.0300e-06
U6y = -5.0321e-07

The element nodal displacement vectors u; and up have the stresses o, oy, Tuy:

For ul:

sigma_x = 3000
sigma_y = 369.2797
tau_xy = 0

For u2:

sigma_x = 3000
sigma_y = -53.4178

tau_xy = 0

Principal Stresses for o1 and o and principal angle 6,:

sigmal:

sl = 3000

s2 = 369.2797
Theta = 0
sigma2:

sl = 3000

s2 = -53.4178
Theta = 0

When these results are compared to those reported in the reference book, a significant similarity is noticed.
This congruence confirms the robustness and accuracy of the developed code, certifying its functionality.

3.1.2 Problem 2

Given E = 210 GPa, v = 0.3, t = 0.025 m, and w = 100 kN/m2 for the three elements shown in Figure 9:

24

0.25m

N
-] P
: w p
0.5m| 2 YVyy)
] 0.25m
Vv
I |
~ 1
0.5m

Figure 9: Thin Plate with a Distributed Load and a Concentrated Load for problem 2

7 8
s
0.25m 12.5kN
\ 4
¢ : 6
0.25m
W
1 2 3

I >} >
0.25m 0.25m

Figure 10: Discretization of Thin Plate Using Three Bilinear Quadrilaterals Elements for problem 2

T 0 x 0.25 T 0
Y1 0 Y1 0 i 0.25
T 0.25 To 0.5 T2 0.25
Element1 = b2 = 0 Element 2 = b2 = 0 Element 3 = b2 = 025
x3 0.25 T3 0.5 x3 0.25
Ys 0.25 Y3 0.25 Y3 0.5
Ta 0 T4 0.25 Ty 0
Y4 0.25 Y4 0.25 Y4 0.5

Element number Nodei Nodej Nodem Noden

1 1 2 5 4
2 2 3 6)
3 4 3 8 7

Table 6: Element connectivity

Determine:

25

1. Global stiffness matrix [K]

2. Horizontal and vertical displacements at each node {U}
3. The reactions at nodes 1,4 and 7 {F}

4. The stresses in each element o, oy, Tzy

5. The principal stresses and principal angle for each element o1, o9, 6,

1.0e+06 *

Columns 1 through 12

2.5962 0.8375 -1.5865 -0.0721 Q Q 0.2885 0.0721 -1.2881 -0.9375 Q a
0.9375 2.5962 0.0721 0.2885] 0 -0.0721 -1.58€5 -0.9375 -1.2981 0 o]
-1.5865 0.0721 5.1923 0 —-1.5865 -0.0721 -1.2981 0.9375 0.5769 0 -1.2981 -0.9375
-0.0721 0.2885 Q 5.1923 0.0721 0.2885 0.8375 -1.2881] -3.1731 -0.8375 -1.2881
a) -1.58&5 0.0721 2.55962 -0.89375) o] -1.2981 0.9375 0.2885 -0.0721

Q 0 -0.0721 0.2885 -0.9375 2.5962 0 [+] 0.9375 -1.25981 0.0721 -1.5865
0.2885 -0.0721 -1.2881 0.8375 Q Q 5.1823 o] -3.1731 Q Q a
0.0721 -1.5865 0.8375 -1.29881 Q Q Q 5.1823] 0.5768 Q a
-1.2981 -0.9375 0.5769 0 -1.2881 0.9375 -3.1731 [+] T.7885 -0.9375 -1.5865 0.0721
-0.9375 -1.2981) -3.1731 0.9375 -1.2981) 0.5769 -0.9375 7.7885 -0.0721 0.2885
Q -1.2881 -0.8375 0.2885 0.0721 Q o] -1.5865 -0.0721 Z.5862 0.8375

a) -0.9375 -1.2881 -0.0721 —-1.58€&5) [u] 0.0721 0.2885 0.9375 2.5962

Q 0 0 0 Q 0 0.2885 -0.0721 -1.2981 0.9375 0 Q

Q Q Q Q Q Q 0.0721 -1.5865 0.8375 -1.2881 Q a

Q Q Q Q Q Q -1.2881 -0.8375 0.2885 0.0721 Q a

Q 0 0 0 Q 0 -0.9375 -1.2981 -0.0721 -1.5865 0 1]

Columns 13 through 16

Q 0 0 0

Q Q Q Q

Q Q Q Q

Q 0 0 0

Q)))

Q Q Q Q
0.2885 0.0721 -1.2981 -0.9375
-0.0721 —-1.5865 -0.9375 -1.2981
-1.2981 0.8375 0.2885 -0.0721
0.8375 -1.2981 0.0721 -1.58&5
Q 0 0 0

Q Q Q Q
2.5962 -0.8375 -1.5865 0.0721
-0.9375 2.5962 -0.0721 0.2885
-1.5865 -0.0721 2.5962 0.9375
0.0721 0.2885 0.8375 Z.5962

Figure 11: Global stiffness matrix for problem 2

The F global nodal force vector is:

Flx = 6.3994
Fly = 4.3354
F2x = 0.0000
F2y = 0.0000
F3x = 0.0000
F3y = 0.0000
F4x = -0.2988
F4y = 3.6296
F5x = 0.0000
F5y = -12.5000

26

F6x = 0.0000
F6y = 0.0000
F7x = -6.1006
F7y = 4.5350
F8x = 0.0000
F8y = 0.0000

The U global nodal displacement vector is:

Ulx = 0.0000e+00
Uly = 0.0000e+00
U2x = -1.3961e-06
U2y = -3.5363e-06
U3x = -1.3286e-06
U3y = -5.4055e-06
U4x = 0.0000e+00
U4y = 0.0000e+00
Ubx = 1.8083e-08
Uby = -4.2163e-06
U6x = 8.5585e-08
U6y = -5.1755e-06
U7x = 0.0000e+00
U7y = 0.0000e+00
U8x = 1.2021e-06
U8y = -3.0103e-06

The element nodal displacement vectors w1, us and uz have the stresses o, oy, Tzy:

For ul:

sigma_x = -730.1786
sigma_y = -504.6593
tau_xy = -1023.9005
For u2:

sigma_x = 0

sigma_y = -189.0038
tau_xy = 0

For u3:

sigma_x = 730.1786

sigma_y = 725.6064

tau_xy = -976.0995

Principal Stresses for o1, o2 and o3 and principal angle 6,,:

sigmal:

sl = 412.6718
s2 = -1647.5098
Theta = 41.8577

sigma2:

27

sl =0

s2 = -189.0038
Theta = 0
sigmad:

sl = 1703.9946
s2 = -248.2097
Theta = -44.9329

The developed code was validated further by applying it to a different problem. The code’s results revealed
amazing consistency with the reference book, confirming its dependability and correctness in generating

accurate solutions.

3.2 Discussion

The fundamental product of the project in this dissertation is the code developed, which reflects the realisation
of our objectives. The code can be found in its totality under Appendix A. While we have previously presented
an overview of the methodology process of FEM and what was aspired to achieve, it is important to recognise
that the code’s complexities and details surpass the conciseness of the previous explanations. In order to
clarify and understand the specifics of the code’s functionality, the code’s internal workings are examined in

this part.

The user is first prompted by the code for input values needed for the FE problem as shown in Figures
1,2 and 3. Users are asked to provide the total number of elements and nodes as well as some material
characteristics, such as Young’s modulus, Poisson’s ratio, and element thickness. The user is also required to
enter coordinates for the element nodes the problem type (Plane Stress or Plane Strain). Another important
prompt is presented to the user which is to input the node numbers for each element. Remember that the
planar quad element has four nodes and the order of the nodes for each element is important. The direction

must be anticlockwise. To make things easier, default values are offered.

Meanwhile the global stiffness matrix K is initialised in the code as a zero matrix. The number of nodes
determines the size of this matrix, K _size. Additionally, the stiffness matrices for each individual element

are created in a cell array called K _elements.

The function enters a loop with the user’s inputs to handle each element. This loop begins by gathering data
from the input such as material characteristics, element connection (nodal information), and coordinates for

every element.

Each finite element’s stiffness matrix is determined by the code. It gets the strain-displacement matrix (B)
from the differentials of the natural shape functions, as indicated in eq. 8. Calculations are also made for the
Jacobian’s determinate. Based on the type of problem the user entered, the material matrix is generated.
The final element stiffness matrix is computed with MATLAB using eq. 17. The stiffness matrix of each

element is then stored in a dynamic variable and the cell array K _elements.

The method enters a second loop after getting stiffness matrices for each element to combine these stiffness
matrices into the K global stiffness matrix. It adds contributions from each element to the relevant positions
in K using the function assembleStif fness (Kattan 2008) which is defined at the end of the code.

The global stiffness matrix K is displayed. This matrix serves as a representation of the complete system

and includes details on the connections between each node in the structure.

28

The user must enter both known and unknown nodal displacements (U) and forces (F) using the code as
shown in Figure 2. Users are prompted to enter values directly for known values, whereas variable names

like Ulx, Uly, etc. are offered as placeholders for unknown values.

In order to facilitate subsequent calculations, the user-provided data for nodal displacements and forces are
processed and arranged into cell arrays. This is carried out for both U (displacements) and F (forces).The
code then generates reduced vectors for nodal displacements (U) by deleting all known values, resulting in

just the unknown displacements being selected. These reduced vectors are shown.

To solve the system of equations, the code employs the global stiffness matrix K and the known forces (F).
The user is asked to enter the rows and columns from K that must be extracted based on the unknown values
in U. The system of equations is solved using Gaussian elimination. To find the unknown displacements, the
backslash operator (\) is used in MATLAB.

The code displays the unknown displacements derived from solving the equation system. Variables in the

workspace are assigned to the unknown displacements for the next calculations.

Subsequently, the code then enters a post-processing step in which it computes stresses for each element. It
initially collects nodal displacement vectors before calculating stresses based on the material characteristics
and geometry of the element. For readability, the code rounds small numbers to zero. Then it computes the
principal stresses and angles for each element with the function BilinearQuadElementPStresses (Kattan

2008). The results are displayed with small numbers rounded to zero for clarity.

The actual code provided in Appendix A is commented so the user has better understanding on what is
happening in each step. Having explained the code, the rest of the discussion will be organised around a few

important matters.

3.2.1 Code Development and Unification

The development of a code for Finite Element specifically designed for planar quad elements was the foun-
dational aspect of this dissertation topic. The code’s conception was founded on a thorough analysis of the
various publications listed throughout this dissertation. The aim was to construct a single, user-friendly
MATLAB-based code that could be executed to efficiently address a variety of structural mechanics issues

by combining these multiple sources.

3.2.2 Flexibility and Efficiency in Computational Methods

There are many different ways to approach a problem in the world of coding. Although the code is fully
operational and capable of producing accurate results, it is critical to recognise that there are other functions,
approaches or programming languages where this code can improve. As a result, even at this point, where
the code is functional, there are still opportunities for refinement and optimisation. Finding and applying

these improvements could make the code even more user-friendly and efficient in the future.

3.2.3 The code’s accessibility and educational value

The potential of the generated FE code to be used as a teaching aid is one noteworthy feature. Recognising
that not all users will be familiar with MATLAB or the Finite Element method for dealing with planar quad
elements, the code was designed to provide insight into the underlying processes. Careful study of the code

can give a coherent picture of the problem-solving steps involved, even to a student or rookie.

29

3.2.4 Combining Various Methodologies

Despite the fact that the FEM is a method that is well known and frequently used in the field of structural
mechanics, it is important to emphasise how adaptable and versatile the method is. The majority of FEM
materials offer a broad framework for problem-solving, however when using this approach with various element
types, variations appear. In this dissertation approaches and insights were gathered from a variety of literature
sources and combined into a single tool designed specifically for planar quad components. By doing this,
we hoped to offer a comprehensive body of information that could be used for both academic and practical
purposes. While the fundamental mathematics stay constant, the interpretations and explanations offered in
books and papers change dramatically. Therefore, it seems like a good idea to compile this knowledge into a

single, easily available resource that is aimed towards a level that is more understandable for students.

3.2.5 Conclusion

This dissertation, in retrospect, shows a thorough journey through the field of finite element analysis and the
resolving of structural problems. The first objective was to create a customised MATLAB code for planar
quadrilateral elements (starting with one element), which was successfully created. The challenge did not
end there, though; it continued to include the creation of a global stiffness matrix combining more than
one element, which enabled us to take on more complex structural problems. The dynamic analysis was

remarkably precise thanks to the integration of numerical techniques like Gaussian integration.

The ability to turn our code into a user-friendly, interactive interface is one of the biggest accomplishments
of this project. This change makes it a helpful educational tool for anyone attempting to understand the
complexity of finite element method. Furthermore, careful consideration was given to readability and com-

prehension by including detailed code documentation.

It’s important to note that people interacting with this code should ideally have a basic understanding of
finite element methods due to the technical nature of the subject matter. This precondition is particularly
important in parts where users are asked to provide rows and columns for the global stiffness matrix’s sub-
matrix extraction (e.g., % Prompt user for the rows and columns to extract sub-matrix using inputdlg).
Although the code does shed light on how the U vector is built, users who are already familiar with matrices

will be better able to identify the precise rows and columns required for extraction.

Finally, this work demonstrates the limitless possibilities of finite element methodologies. It not only fills
the gap between theory and application in the real world, but it also encourages creativity in engineers,

researchers, and students who are faced with difficult structural problems.

30

4 Discussion and future work

This chapter’s conclusion serves as a summary analysis of the findings presented throughout the report. As
expected, our main objective was accomplished; the created code correctly applies the finite element method
to a wide range of planar quad element problems. This success demonstrates the code’s usefulness in real

world applications.

In the future, there is room for improvement. While the current code successfully communicates with users
via dialogue boxes, the logical next step is to develop a specific MATLAB application. This would add to

the code’s strong mathematical base by providing a more user-friendly and visually appealing interface.

The automated partitioning stage is another area that could use improvement. The search for simpler,
automated methods should nevertheless be pursued even though this currently requires user involvement. It
is an opportunity that could further improve the code’s effectiveness and usability even though it is not yet

effectively implemented.

We also need to take into account the exciting possibilities of languages like Julia or Python. These languages
are attractive choices for future development because they offer a flexible toolkit for creating interactive and
user-friendly applications. Compared to MATLAB, their open-source nature provides global access, and their

automation capabilities further increase their attractiveness.

The importance of giving consumers a greater knowledge of the underlying mathematics cannot be overstated,
even though it is outside the scope of this study. By providing understanding of the intricate nature of
computation, this might greatly increase the code’s value and make it an even more useful teaching tool. The
field’s continual evolution is reflected in these potential developments, creating the opportunity for constant

growth and enhancement.

31

References

Akin, J. E. (1994), Finite elements for analysis and design, Computational mathematics and applications,

Academic Press, London ;. Section: xi, 548 pages : illustrations ; 24 cm + 1 computer disc (3 1/2 in.).

Argyris, J. & Kelsey, S. (1954), ‘Energy Theorems and Structural Analysis’, Aircraft Engineering and
Aerospace Technology 26(12), 410-422. Publisher: MCB UP Ltd.
URL: https://doi.org/10.1108/eb032502

Buchanan, G. R. (1995), Schaum’s outline of theory and problems of finite element analysis, Schaum’s outline
series, McGraw-Hill, New York. Section: viii, 264 pages : illustrations ; 28 cm.
URL: http://catdir.loc.gov/catdir/toc/mh022/94011362.html

Chessa, J. (2002), ‘Programing the Finite Element Method with Matlab’.
Clough, R. W. (1960), ‘The Finite Element Method in Plane Stress Analysis’.

Courant, R. (1943), ‘Variational methods for the solution of problems of equilibrium and vibrations’, Bulletin
of the American Mathematical Society 49, 1-23.

Ferreira, A. (2008), MATLAB Codes for Finite Element Analysis: Solids and Structures, 1st edn, Springer
Publishing Company, Incorporated.

Fish, J. & Belytschko, T. (2007), A first course in finite elements, John Wiley, Hoboken, NJ. Section: xiv,
319 p. : ill. (some col.) ; 25 cm.+ 1 computer optical disc (4 3/4 in.).
URL: http://catdir.loc.gov/catdir/enhancements/fy0741/2007298648-b.html

Hrennikoff, A. (1941), ‘Solution of Problems of Elasticity by the Framework Method’, J. Appl. Mech. .
URL: https://cir.nii.ac.jp/crid/1570854175168115072

Hutton, D. V. (2004), Fundamentals of finite element analysis., 1st ed. edn, McGraw-Hill Higher Education,

Boston. Section: xiv, 494 pages : illustrations ; 24 cm.

Jung, J., Jun, H. & Lee, P.-S. (2022), ‘Self-updated four-node finite element using deep learning’, Computa-
tional Mechanics 69(1), 23-44.
URL: https://doi.org/10.1007/s00466-021-02081-7

Kattan, P. (2008), MATLAB guide to finite elements: An interactive approach, Springer.

Khennane, A. (2013), ‘Introduction to finite element analysis using MATLAB and Abaqus’, Introduction to
Finite Element Analysis Using MATLAB and Abaqus . ISBN: 9781466580213.

Lubarda, M. V. & Lubarda, V. A. (2020), Two-Dimensional Problems of Elasticity, in ‘Intermediate Solid
Mechanics’, Cambridge University Press, Cambridge, pp. 143-167.
URL: https://www.cambridge.orq/core/books /intermediate-solid-mechanics /twodimensional-problems-of-
elasticity/5527ECO009BF5F8D61CC482EA22E71C9D

Nazaruddin, N. & Siallagan, R. (2021), ‘Software Engineering Development of Finite Element Method Pro-
gramming Applications in 2D Frame Structures Using Python Programs’, Journal of Physics: Conference
Series 2049, 012031.

Obumneme, A. E., Chukwuebuka, A. O., Chukwudi, N. N., Oscar, N. C., Nelson, O. C., Keji, A. H.,
Ibeamaka, O. M., Sunday, O., Don-Ugbaga, C. & Ezeokpube, G. C. (2022), ‘Finite Element Analysis of
Continuous Plates Using a High-Performance Programming Language (MATLAB)’, Path of Science .

32

Ortigoza, G. & Ponce De La Cruz Herrera, R. I. (2023), ‘Resolviendo ecuaciones diferenciales ordinarias con
Symbolic Math Toolbox™ (Matlab) y SymPy (Python)’, Revista Mexicana de Fisica E 20(2 Jul-Dec).
URL: https://rmf.smf.mx/ojs/index.php /rmf-e/article /view/T012

Pan, J., Huang, J., Wang, Y., Cheng, G. & Zeng, Y. (2021), ‘A self-learning finite element extraction system
based on reinforcement learning’, AI EDAM 35(2), 180-208. Edition: 2021/04/21 Publisher: Cambridge
University Press.

URL: https://www.cambridge.orqg/core/article/selflearning-finite-element-extraction-system-based-on-
reinforcement-learning/75000DF8A 16544 C462457AT8E1C12853

Perumal, L. & Mon, D. T. T. (2011), ‘Finite Elements for Engineering Analysis: A Brief Review’.

Qianwei, D., Yi, L., Zhang, B., Feng, D.-S., Wang, X. & Yin, X. (2019), ‘A practical adaptive moving-mesh
algorithm for solving unconfined seepage problem with Galerkin finite element method’, Scientific Reports
9, 6988.

Rao, S. S. . (2018), The finite element method in engineering, sixth edition. edn, Butterworth-Heinemann,
an imprint of Elsevier, Kidlington, Oxford, United Kingdom.
URL: https://www.sciencedirect.com/science/book/9780128117682

Rees, 1947, D. W. A. D. W. A. (1997), Basic solid mechanics, Macmillan, Houndmills, Basingstoke, Hamp-

shire. Section: xii, 396 pages : illustrations ; 24 cm.

Reis, J. P. C. d. & Judnior, P. A. A. M. (2018), ‘Introduction to the Method of Finite Elements by a balance
Sheet Problem: A Simplification for an Initial understanding of the Method’, International Journal of
Advanced Engineering Research and Science 5, 1-4.

URL: https://api.semanticscholar.org/CorpusID:59062596

Selleri, S. (2022), ‘A Brief History of Finite Element Method and Its Applications to Computational Elec-
tromagnetics’, The Applied Computational Electromagnetics Society Journal (ACES) .

Simon-Marinica, Adrian Bogdan, Vlasin, Nicolae-Toan, Manea, Florin & Florea, Gheorghe-Daniel (2021),
‘Finite element method to solve engineering problems using ansys’, MATEC Web Conf. 342, 01015.
URL: https://doi.org/10.1051 /matecconf/202134201015

Taig, I. & Kerr, R. (1964), ‘Some problems in the discrete element representation of aircraft structures’,

Matrixz methods of structural analysis pp. 267-315. Publisher: Pergamon Press London.

Turner, M. J., Clough, R. W., Martin, H. C. & Topp, L. J. (1956), ‘Stiffness and Deflection Analysis of Com-
plex Structures’, Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences) 23(9), 805—
823.

URL: https://app.dimensions.ai/details /publication/pub. 1023945723

Zienkiewicz, O. C. (1977), The Finite Element Method (3rd edn), Vol. 60, McGraw-Hill, New York.

Zienkiewicz, O. C., Taylor, 1934, R. L. R. L. & Zhu, J. Z. (2013), The finite element method : its basis and
fundamentals, seventh edition. edn, Butterworth-Heinemann, Oxford, UK ;.
URL: http://www.books24x7.com/marc.asp ?bookid=56579

33

A Appendix - Code

The following code sets up and solves a FE problem for a 2D structure with user defined material properties,

element connectivity, nodal displacements, and forces.

% Prompt user for both inputs in a single dialog box

prompt = {'\fontsize{13}Enter the number of elements:', '\fontsize{13}
Enter the number of nodes:'};

dlgtitle = 'Input';

dims = [1 45];

definput = {'', ''}; % Default values (empty)

opts.Interpreter = 'tex';

answer = inputdlg(prompt, dlgtitle, dims, definput,opts);

if isempty(answer)
error ('User canceled the input.');

end

% Extract the inputs
num_elements = str2double (answer{1});

num_nodes = str2double (answer{2}) ;

% Calculate the size of the global stiffness matrix K

K_size = 2 * num_nodes;

% Initialize the global stiffness matrix K as a zero matrix

K = zeros(K_size, K_size);

% Initialize a cell array to store stiffness matrices for each element

K_elements = cell(num_elements, 1);

% Loop through each element
for element_idx = 1l:num_elements
% Input for the current element
prompt = ["\fontsize{13}Enter young's modulus value for element " +
num2str (element_idx),
"\fontsize{13}Enter poisson's ratio for element " + num2str(
element_idx),
"\fontsize{13}Enter element thickness for element " +
num2str (element_idx),

"\fontsize{13}What type of problem is it? (Plane Stress or

Plane Strain) for element " + num2str(element_idx),
"\fontsize{13}Enter the coordinate positions for element " +
num2str (element_idx) + ": "];
dims = [1 55];
definput = {'210e6', '0.3', '0.025', 'Plane Stress', '

34

0;0;0.25;0;0.25;0.25;0;0.25"'3%};
opts.Interpreter = 'tex';

answer = inputdlg(prompt, dlgtitle, dims, definput, opts);

if isempty (answer)
error ('User canceled the input.');

end

% Extract input values from the answer cell aray

E = str2double (answer{1});

nu = str2double (answer{2}) ;

t = str2double (answer{3});

problem_type = answer{4};

P = str2num(answer{5}); %#0k<ST2NM> J, Convert the string to a numeric

vector

% Prompt the user for element connectivity (nodes i, j, m, and n)

connectivity_prompt = 'Enter the node numbers (i, j, m, n) for
element:';

connectivity_answer = inputdlg(connectivity_prompt, dlgtitle, dims);
connectivity_prompt = {'\fontsize{13}Enter the node numbers (i, j, m,

n) for element:'};
dlgtitle = 'Input';
dims = [1 55];
definput = {''};), Default values (empty)
opts.Interpreter = 'tex';
connectivity_answer = inputdlg(connectivity_prompt, dlgtitle, dims,

definput ,opts);

if isempty(connectivity_answer)
error ('User canceled the input.');

end

% Extract node numbers from the connectivity answer and convert to
numeric values

node_inputs = str2num(connectivity_answer{1}); /#ok<ST2NM>

% Check if the number of inputs is valid
if numel (node_inputs) "= 4
error ('Invalid input for node numbers. Please provide four node
numbers. ') ;

end

% Assign node numbers to individual variables

i_node = node_inputs (1);

35

j_node = node_inputs(2);

m_node = node_inputs(3);

n_node = node_inputs (4);

% Store the connectivity information in the element_connectivity
matrix

element_connectivity(element_idx, :) = [i_node, j_node, m_node, n_node
1;

% element_connectivity(l, :) to access the nodes for each element

% Assign nodal positions to individual variables

x1 = P(1);
yi1 = P(2);
x2 = P(3);
y2 = P(4);
x3 = P(5);
y3 = P(6);
x4 = P(7);
y4 = P(8);

% Display the input values

fprintf ("Young's Modulus: %.2f Pa\n",E);
fprintf ("Poisson's Ratio: %.2f\n",nu);

fprintf ("Element thickness: 7, .4f meters\n",t);
fprintf ("Problem Type: %s\n", problem_type);
fprintf ('Coordinate Positions:\n');
fprintf('x1 = %.3f, y1 = %.3f\n', x1, y1);
fprintf ('x2 = %.3f, y2 = %.3f\n', x2, y2);
fprintf('x3 = %.3f, y3 = %.3f\n', x3, y3);
fprintf('x4 = %.3f, y4 = %.3f\n', x4, y4);

% Determining the element stiffness matrix for a quadrilateral element

% using natural shape functions (element edges aligned with axes)

% The natural shape functions for a bilinear four node quadrilateral
% element are:

syms xi eta;

N1 = (1-xi)*(1-eta)/4;

N2 = (1+xi)*(l-eta)/4;

N3 = (1+xi)*(l+eta)/4;

N4 = (1-xi)*x(l+eta)/4;

% Find Strain Displacement Matrix (B)

36

Nixx1l + N2%xx2 + N3*x3 + N4x*x4;
Nixyl + N2*xy2 + N3*xy3 + N4xy4;

% These need to be differentiated with respect to xi and eta:

xxi = diff (x,xi);
xeta = diff(x,eta);
yxi = diff(y,xi);
yeta = diff (y,eta);

% The determinate of the Jacobian (Det(J))
J =

is given by:

xxi*yeta - yxi*xeta;

% The differentials of N1,N2,N3,N4 with respect to xi and eta are

given by:
Nixi = diff (N1,xi);
N2xi = diff (N2,xi);
N3xi = diff (N3,xi);
Ndxi = diff (N4,xi);
Nieta = diff (N1,eta);
N2eta = diff (N2,eta);
N3eta = diff (N3,eta);
Ndeta = diff (N4,eta);
% The strain displacement matrix is given by:
Bll = yetax*N1xi - yxixNleta;
B12 = 0;
B13 = yeta*N2xi - yxi*N2eta;
B14 = 0;
B15 = yeta*N3xi - yxixN3eta;
Bi16 = 0;
B17 = yeta*N4xi - yxix*Ndeta;
B18 = 0;
B21 = 0;
B22 = xxi*Nleta - xetaxN1lxi;
B23 = 0;
B24 = xxi*N2eta - xetax*xN2xi;
B25 = 0;
B26 = xxi*N3eta - xeta*N3xi;
B27 = 0;
B28 = xxi*N4eta - xetaxN4dxi;
B31 = xxi*Nleta - xetaxN1lxi;
B32 = yetax*N1lxi - yxixNleta;
B33 = xxi*N2eta - xetaxN2xi;
B34 = yetax*N2xi - yxixN2eta;
B35 = xxi*N3eta - xeta*N3xi;

37

B36

B37

B38 yeta*xN4xi - yxixN4deta;

B = [B11 B12 B13 B14 B15 B16 B17 B18 ;
B21 B22 B23 B24 B25 B26 B27 B28 ;
B31 B32 B33 B34 B35 B36 B37 B38];

yeta*N3xi - yxi*N3eta;

xxi*N4deta - xeta*N4xi;

% Perform calculations based on the problem type
% Get the material matrix:
% Plane Stress
if strcmpi(problem_type, 'Plane Stress')
D = (E/(1-nu*nu))*[1, nu, O ; nu, 1, 0 ; 0, O, (1-nu)/2];
% Plane Strain
elseif strcmpi(problem_type, 'Plane Strain')
D = (E/(1+nu)/(1-2*nu))*[1-nu, nu, O ; nu, 1-nu, O ; O, O, (1-2*nu)
/21;

end

% The final element stiffness matrix when integrated becomes:
BD = transpose(B)*DxB/J;

int (int (BD, eta, -1, 1), xi, -1, 1);

t*xr;

double(z);

% Store the stiffness matrix in a dynamic variable (k1, k2, k3, etc.)
k_name = ['k', num2str(element_idx)]; % Generate the variable name

eval ([k_name, ' = w;']); % Assign the stiffness matrix to the variable

% Store the stiffness matrix in the cell array
K_elements{element_idx} = w;

end

% You now have stiffness matrices for all elements in K_elements cell
array

% Access them using K_elements{element_idx}

% Now you have stiffness matrices for all elements in K_elements cell

array

% Loop through each element to compute and assemble the stiffness matrix
for element_idx = 1l:num_elements
% Compute the stiffness matrix for the current element (kl, k2, etc.)
k_name = ['k', num2str(element_idx)];
k = eval(k_name); % Retrieve k1, k2, etc.

38

end

% Retrieve element connectivity information (I, j, m, n) for the
current element

= element_connectivity(element_idx, 1);

= element_connectivity(element_idx, 2);

element_connectivity (element_idx, 3);

B B w. e
]

= element_connectivity(element_idx, 4);

% Call the assembleStiffness function to update the global stiffness
matrix K

K = assembleStiffness(X, k, i, j, m, n);

% Now, K contains the assembled global stiffness matrix

% Display the global stiffness matrix K
disp('Global Stiffness Matrix K:');
disp (K) ;

% Prompt user for known and unknown displacements (U) and forces (F) for

each node
cell (2 * num_nodes, 1); % Initialize U as a cell array

cell(2 * num_nodes, 1); % Initialize F as a cell array

node_idx = 1:num_nodes

% Prompt user for displacements Ux and Uy for each node

prompt = {['\fontsize{13}Enter ' 'U' num2str (node_idx) 'x' ' :'],
['\fontsize{13}Enter ' 'U' num2str(node_idx) 'y' ' :'],
['\fontsize{13}Enter ' 'F' num2str (node_idx) 'x' ' :'],
['\fontsize{13}Enter ' 'F' num2str(node_idx) 'y' ' :'l};

dims = [1 45];
definput = {['U' num2str(node_idx) 'x'], ['U' num2str(node_idx) 'y'],

['F' num2str(node_idx) 'x'], ['F' num2str(node_idx) 'y']l};
opts.Interpreter = 'tex';

answer = inputdlg(prompt, dlgtitle, dims, definput, opts);

if isempty(answer)
error ('User canceled the input.');

end

% Extract input values from the answer cell array
Ux = answer{1l};
Uy = answer{2};
Fx = answer{3};

Fy = answer{4};

39

% Save the input values as variables

assignin('base', ['U' num2str(node_idx) 'x'], Ux);
assignin('base', ['U' num2str(node_idx) 'y']l, Uy);
assignin('base', ['F' num2str(node_idx) 'x'], Fx);
assignin('base', ['F' num2str(node_idx) 'y'l, Fy);

% Update the global nodal displacement vector (U) and force vector (F)
U{2 * node_idx - 1} = Ux;

U{2 * node_idx} = Uy;

F{2 * node_idx - 1} = Fx;

F{2 * node_idx} = Fy;

end

% Now, U contains the global nodal displacement vector and F contains the
global nodal force vector

% Display the global nodal displacement vector and force vector

fprintf ('Global Nodal Displacement Vector (U):\n');

num_nodes = numel(U) / 2;
for i = 1:num_nodes
node_idx = ceil(i);

% Display x component of displacement
fprintf ('Node %dx: %s\n', node_idx, U{2*xi - 1});

% Display y component of displacement
fprintf ('Node %dy: %s\n', node_idx, U{2xi});

end
fprintf ('Global Nodal Force Vector (F):\n');
for i = 1l:num_nodes

node_idx = ceil(i);

% Display x component of force
fprintf ('Node %dx: %s\n', node_idx, F{2*xi - 1});

% Display y component of force
fprintf ('Node %dy: %s\n', node_idx, F{2xi});

end

% Initialize a reduced U cell array
reduced_U = {};

% Iterate through the U vector

40

for i = 1:numel(U)
% Check if the element starts with 'U' (indicating it's an unknown
variable)
if stroncmp (U{i}, 'U', 1)
reduced_U{end+1} = U{i};
end

end

% transpose the reduced_U

reduced_U = reduced_U';

% Display the transposed reduced U vector
disp(reduced_U);

% Initialize the reduced force vector
reduced_F = [];

% Iterate through the F cell array
for i = 1:numel(F)
% Check if the element is a numeric string
if “isnan(str2double (F{i}))
% Convert the numeric string to a double and append to reduced_F
reduced_F (end+1) = str2double(F{i});
end

end

% Display the reduced_F vector
disp('Reduced Force Vector (F):');
disp(reduced_F);

% Prompt user for the rows and columns to extract sub-matrix using

inputdlg

prompt_rows = {'Enter rows (e.g., 3:6,9:12):"'};
prompt_cols = {'Enter columns (e.g., 3:6,9:12):"'};

dlgtitle = 'Enter Row and Column Indices';

dims = [1 60];

definput = {'3:6,9:12"', '3:6,9:12'}; 7 Default values (example)
opts.Interpreter = 'tex';

row_indices_str = inputdlg(prompt_rows, dlgtitle, dims, definput, opts);

col_indices_str inputdlg (prompt_cols, dlgtitle, dims, definput, opts);

if isempty(row_indices_str) || isempty(col_indices_str)

error ('User canceled the input.');

end

41

% Convert the user input strings to numeric row and column indices
eval (['[' row_indices_str{1} '1'1);
eval (['[' col_indices_str{1} '1'1);

row_indices

col_indices

% Extract the sub-matrix from K based on the specified row and column
indices

submatrix = K(row_indices, col_indices);

% Display the extracted sub-matrix
fprintf ('Extracted Sub-Matrix from K:\n');

disp(submatrix);

% Solve the system of equations u = submatrix\reduced_F (gaussian
% elimination with MATLAB) The backlash operator "\" is used for that in
MATLAB

% I transpose reduced_F to match the sizes of the matrices

u = submatrix \ reduced_F';

% show the solution for the system of equations
fprintf ('The unknown displacements in reduced_U are:\n');

for i = 1:numel(reduced_U)
fprintf ('%s = %.4e\n', reduced_U{il}, u(i));

% Create variables with the respective results
variable_name = reduced_U{i};
assignin('base', variable_name, u(i));

end

% Post processing

% Initialize a cell array to store the global nodal displacement vector U

U = cell(2 * num_nodes, 1);

% Loop through each node to construct the global nodal displacement vector
U
for node_idx = 1:num_nodes
% Use evalin to fetch the known values for Ux and Uy from the
workspace
Ux = evalin('base', ['U' num2str (node_idx) 'x']);

Uy = evalin('base', ['U' num2str(node_idx) 'y'l);

42

% Create cell array entries for Ux and Uy
U{2 * node_idx - 1} = (Ux);
U{2 * node_idx} = (Uy);

end

% Now, U contains the complete global nodal displacement vector
% Display the global nodal displacement vector
fprintf ('Global Nodal Displacement Vector (U):\n');

num_nodes = numel(U) / 2;
for i = 1:num_nodes
node_idx = ceil(i);

% Display x component of displacement
fprintf ('Node %dx: %s\n', node_idx, U{2*xi - 13});

% Display y component of displacement
fprintf ('Node %dy: %s\n', node_idx, U{2xi});

end

% Initialize the numeric array

U_numeric = zeros(size(U));

% Loop through each element in the cell array
for i = 1:numel(U)
% Check if it's a numeric value or a cell
if isnumeric (U{i})
U_numeric (i) = U{i};
elseif iscell(U{i})
% Assuming there's only one element in the cell

inner_value = U{i}{1};

if isnumeric(inner_value)
U_numeric (i) = inner_value;

else
% Convert the string representation to a numeric value
numeric_str = regexprep(inner_value, '["\d.eE+-1', '');
U_numeric(i) = str2double (numeric_str) ;

end

end

end
% Now, U_numeric should correctly represent numeric values

% Get unkonw forces with F = Kx*xU

F = K*U_numeric;

43

% Define threshold for values close to zero
threshold = 1e-10;

% Define the unknown forces cell array

unknown_forces = cell(num_nodes, 2);

% Loop through each node to display and save the unknown forces
fprintf ('The F global nodal force vector is:\mn');

for node_idx = l:num_nodes

F(2 * node_idx - 1);

F(2 * node_idx);

force_x

force_y

% Check if the values are close to zero and set them to zero
if abs(force_x) < threshold
force_x = 0;
end
if abs(force_y) < threshold
force_y = 0;
end

% Display and save the values to the workspace
fprintf ('F%dx = %.4f\n', node_idx, force_x);
fprintf ('Fl%dy = %.4f\n', node_idx, force_y);

% Create variables with the respective results and save them to the

workspace

['F' num2str (node_idx) 'x'];

['F' num2str (node_idx) 'y'l;

variable_name_x

variable_name_y
assignin('base', variable_name_x, force_x);

assignin('base', variable_name_y, force_y);

% Store the values in the unknown_forces cell array
unknown_forces{node_idx, 1} = variable_name_x;
unknown_forces{node_idx, 2} = variable_name_y;

end

% Now you have displayed, saved, and stored the unknown forces

% Loop through each node to display and save the unknown displacements

fprintf ('The U global nodal displacement vector is:\n');

for node_idx = 1:num_nodes
disp_x = U_numeric (2 * node_idx - 1);
disp_y = U_numeric(2 * node_idx);

44

% Display and save the values to the workspace
fprintf ('U%dx
fprintf ('U%dy

%.4e\n', node_idx, disp_x);

%.4e\n', node_idx, disp_y);

% Create variables with the respective results and save them to the

workspace

1;
] .

)

variable_name_x ['U' num2str (node_idx) '

X
variable_name_y ['U' num2str (node_idx) 'y'
assignin('base', variable_name_x, disp_x);

assignin('base', variable_name_y, disp_y);

% Store the values in the unknown_disps cell array
unknown_disps{node_idx, 1} = variable_name_x;
unknown_disps{node_idx, 2} = variable_name_y; %#ok<*SAGROW>

end

% Find the stresses in each element setting the nodal displacement vectors

% to calculate the stresses sigman

% We already have the number of elements in the variable in num_elements

% Create nodal displacement vectors for each element

disp('The element nodal displacement vectors are: ');
% Determine the number of rows in element_connectivity

num_rows = size(element_connectivity, 1);

% Initialize a cell array to store the u vectors for each row

u_cell = cell(l, num_rows);

% Iterate through each row of element_connectivity
for row_to_extract = 1l:num_rows
% Extract the node numbers for the current row

nodes = element_connectivity(row_to_extract, :);

% Initialize the u vector for the current row

u_row = zeros (2 * numel (nodes), 1);

% Construct the variable names and populate u_row

for i = 1:numel (nodes)
node_number = nodes (i) ;
% Construct the variable names based on node_number (e.g., Ulx,
Uly, U2x, U2y, etc.)
variable_name_x = ['U', num2str (node_number), 'x'];

45

variable_name_y = ['U', num2str(node_number), 'y'];
% Get the values from the workspace

u_x = evalin('base', variable_name_x);

u_y = evalin('base', variable_name_y);

% Assign the values to u_row

u_row(2 * i - 1) = u_x;

u_row(2 * i) = u_y;

end

% Store the u vector for the current row in the cell array

u_cell{row_to_extract} = u_row;

% Assign u_row to individual variables (ul,u2,etc.)

assignin('base',['u',num2str (row_to_extract)], u_row);

% Display the u vector for the current row
disp(['u', num2str(row_to_extract), ':']l);
disp(u_row);
end
% Now you have individual variables for each element nodal displacement
% vector
% Obtain the element stress vector for each element
syms xi eta;
a = (ylx(xi-1)+y2*(-1-xi)+y3*(1+xi)+yd*x(1-xi))/4;
b = (yl*(eta-1)+y2*(l-eta)+y3*(1l+eta)+yd*(-1-eta))/4;
(x1*x(eta-1)+x2*(1-eta)+x3*x(1+eta)+xd4*(-1-eta))/4;
(x1x(xi-1)+x2*x(-1-xi)+x3*(1+xi)+x4*x(1-xi)) /4;
1 = [ax(eta-1)/4-b*x(xi-1)/4 0 ; 0 c*x(xi-1)/4-d*(eta-1)/4 ;
c*x(xi-1)/4-d*x(eta-1)/4 ax(eta-1)/4-b*(xi-1)/4];
B2 = [a*(l-eta)/4-b*x(-1-xi)/4 0 ; 0 c*x(-1-xi)/4-d*(1-eta)/4 ;
c*(-1-xi)/4-d*(l-eta)/4 ax(l-eta)/4-bx(-1-xi)/4];
B3 = [a*x(eta+1)/4-b*(xi+1)/4 0 ; 0O c*x(xi+1)/4-dx(eta+1)/4 ;
c*x(xi+1)/4-d*x(eta+1) /4 ax(eta+1)/4-b*x(xi+1)/4];
B4 = [a*(-1-eta)/4-b*(1-xi)/4 0 ; 0 c*x(1-xi)/4-d*(-1-eta)/4 ;
cx(1-xi)/4-dx(-1-eta)/4 ax(-1-eta)/4-b*(1-xi)/4];

w a o
I

Bfirst = [B1 B2 B3 B4];

Jfirst = [0 1-eta eta-xi xi-1 ; eta-1 0 xi+1 -xi-eta ;
xi-eta -xi-1 0 eta+1l ; 1-xi xi+eta -eta-1 0];

J = [x1 x2 x3 x4]xJfirstx*[yl ; y2 ; y3 ; y4l/8;

B = Bfirst/J;

if strcmpi(problem_type, 'Plane Stress')

D = (E/(1-nu*nu))*[1, nu, O ; nu, 1, 0 ; 0, O, (1-nu)/2];
elseif strcmpi(problem_type, 'Plane Strain')

D = (E/(1+nu)/(1-2*nu))*[1-nu, nu, O ; nu, 1-nu, 0 ; 0, O, (1-2%nu)/2];
end

46

hh

tolerance = 1e-10;

for i = 1:num_rows
7% Create variable names like 'ul', 'u2', etc.
u_name = ['u' num2str(i)];

% Check if the variable exists in the workspace

if evalin('base', ['exist(''' u_name ''', ''wvar'')'])
% If the variable exists, assign it to 'u' and calculate 'wcent'
u = evalin('base', u_name);
w =D *x B *x u;

% Calculate and save the result in sigmal, sigma2, etc.
wcent = subs(w, {xi, etal}, {0, 0});

sigma_name = ['sigma' num2str(i)];
assignin('base', sigma_name, double(wcent));
sigma_values = double(wcent);

% Round values close to zero to zero

sigma_values (abs(sigma_values) < tolerance) = 0;

% Create variables for sigma_x, sigma_y, and tau_xy

sigma_x = sigma_values(1);
sigma_y = sigma_values (2);
tau_xy = sigma_values (3);

% Display the variable names and values

disp(['For ' u_name ':']);
disp(['sigma_x = ' num2str(sigma_x)]);
disp(['sigma_y = ' num2str(sigma_y)]);
disp(['tau_xy = ' num2str(tau_xy)]);
else
disp(['Variable ' u_name ' not found in the workspace.']);

end

end

% Calculate the principal stresses and principal angle for each element

for i = 1l:num_rows
% Create variable names like 'sigmal', 'sigma2',6 etc.
sigma_name = ['sigma' num2str(i)];

% Check if the variable exists in the workspace
if evalin('base', ['exist(''' sigma_name ''', ''wvar'')'l)

% If the variable exists, retrieve its value

47

end

sigma = evalin('base', sigma_name);

% Calculate principal stresses and angle using the function

principal_results = BilinearQuadElementPStresses(sigma);

% Round values close to zero to zero

principal_results (abs(principal_results) < tolerance) = 0;

% Save the results in variables sl1, s2, theta, etc.
sl = principal_results(1);
s2 = principal_results(2);

theta = principal_results (3);

% Check if the absolute value is less than the tolerance
if abs(sl) < tolerance

sl = 0;
end

if abs(s2) < tolerance

s2 = 0;

end

if abs(theta) < tolerance
theta = 0;

end

% Display the results

disp(['Principal Stresses for ' sigma_name ':']);
disp(['sl = ' num2str(s1)]);
disp(['s2 = ' num2str(s2)]);
disp(['Theta = ' num2str(theta)l]);
else
disp(['Variable ' sigma_name ' not found in the workspace.']);

end

% Define a function to assemble the element stiffness matrix k into the

global stiffness matrix K

function K = assembleStiffness(K, k, i, j, m, n)

% Update the global stiffness matrix using element stiffness matrix k
K(2%i-1,2%i-1) = K(2*%i-1,2xi-1) + k(1,1);

K(2%i-1,2%1i) = K(2%i-1,2*%i) + k(1,2);

K(2%i-1,2%j-1) = K(2*i-1,2%xj-1) + k(1,3);

K(2xi-1,2%3j) = K(2*xi-1,2%j) + k(1,4);

K(2%i-1,2%m-1) = K(2*%i-1,2*m-1) + k(1,5);

K(2%i-1,2%m) = K(2%i-1,2*m) + k(1,6);

K(2%i-1,2%n-1) = K(2*xi-1,2*xn-1) + k(1,7);

48

K(2%i-1,2%*n)
K(2*xi,2%i-1) =
K(2*i,2%i) =
K(2%i,2%j-1) =
K(2%i,2%xj) =
K(2%i,2*m-1) =
K(2%i,2*m) =
K(2%1i,2%*n-1) =
K(2*i,2*xn) =
K(2%j-1,2%i-1)
K(2%j-1,2%i) =
K(2%j-1,2%j-1)
K(2%j-1,2%3)
K(2%j-1,2*%m-1)
K(2*xj-1,2%m)
K(2%xj-1,2%n-1)
K(2*xj-1,2%n)
K(2%j,2%i-1)
K(2%3j,2%i) =
K(2%3j,2%j-1) =
K(2%j,2%j) =
K(2*%j,2*xm-1) =
K(2%j,2*m) =
K(2*j,2xn-1) =
K(2*j,2%n) =
K(2*m-1,2*%i-1)
K(2%m-1,2%1i)
K(2*m-1,2%j-1)
K(2*xm-1,2%7)
K(2*m-1,2*m-1)
K(2*xm-1,2*m) =
K(2*m-1,2%n-1)
K(2*m-1,2%*n)
K(2*m,2%i-1) =
K(2*m,2*1i) =
K(2%m,2xj-1) =
K(2%m,2xj) =
K(2*m,2*m-1) =
K(2*m,2*m) =
K(2*m,2*xn-1) =
K(2%m,2*n) =
K(2%n-1,2%i-1)
K(2*n-1,2%1i) =
K(2%xn-1,2%j-1)
K(2*n-1,2%j) =

K(2*xi-1,2*%n) + k(1,8);
K(2%i,2*xi-1) + k(2,1);

K(2xi,2%xi) + k(2,2);

K(2*xi,2%xj-1) + k(2,3);

K(2%i,2%j) + k(2,4);

K(2%i,2*xm-1) + k(2,5);

K(2*i,2*m) + k(2,6);

K(2*i,2*n-1) + k(2,7);

K(2*i,2*n) + k(2,8);

= K(2*xj-1,2%i-1) + k(3,1);
K(2%j-1,2%i) + k(3,2);
= K(2*j-1,2xj-1) + k(3,3);
K(2*xj-1,2%3j) + k(3,4);
= K(2%j-1,2*m-1) + k(3,5);
K(2%j-1,2*%m) + k(3,6);
= K(2%j-1,2*%n-1) + k(3,7);
K(2xj-1,2%n) + k(3,8);
K(2%j,2%i-1) + k(4,1);

K(2%j,2xi) + k(4,2);

K(2xj,2%xj-1) + k(4,3);

K(2%j,2%j) + k(4,4);

K(2xj,2*m-1) + k(4,5);

K(2%j,2*m) + k(4,6);

K(2*xj,2*n-1) + k(4,7);

K(2*j,2xn) + k(4,8);

= K(2*m-1,2*%i-1) + k(5,1);
K(2*m-1,2%i) + k(5,2);
= K(2*m-1,2%j-1) + k(5,3);
K(2%m-1,2%3j) + k(5,4);
= K(2*m-1,2*m-1) + k(5,5);
K(2*m-1,2*xm) + k(5,6);
= K(2*m-1,2*n-1) + k(5,7);
K(2*m-1,2*n) + k(5,8);
K(2*m,2%xi-1) + k(6,1);

K(2*m,2xi) + k(6,2);

K(2*m,2%xj-1) + k(6,3);

K(2*m,2xj) + k(6,4);

K(2*m,2*m-1) + k(6,5);

K(2*m,2*m) + k(6,6);

K(2*m,2*xn-1) + k(6,7);

K(2*m,2*n) + k(6,8);

= K(2*n-1,2xi-1) + k(7,1);
K(2*n-1,2*%i) + k(7,2);
= K(2*n-1,2%j-1) + k(7,3);
K(2*n-1,2*%3j) + k(7,4);

49

K(2%*n-1,2*m-1) = K(2*n-1,2*m-1) + k(7,5);
K(2%n-1,2%*m) K(2*n-1,2*m) + k(7,6);
K(2*n-1,2*n-1) = K(2*n-1,2*n-1) + k(7,7);
K(2*xn-1,2%n) K(2*n-1,2*n) + k(7,8);
K(2*n,2%i-1) = K(2*n,2*i-1) + k(8,1);
K(2%n,2*%i) = K(2*n,2*i) + k(8,2);
K(2*n,2xj-1) = K(2*n,2*j-1) + k(8,3);
K(2%n,2%j) = K(2%n,2%j) + k(8,4);
K(2%n,2*m-1) = K(2*n,2*xm-1) + k(8,5);
K(2*n,2*m) = K(2*n,2*m) + k(8,6);
K(2%n,2*n-1) = K(2*n,2*n-1) + k(8,7);
K(2*n,2xn) = K(2*n,2*n) + k(8,8);

y = K;

end

% This function returns the element principal stresses and their angle
given the element stress vector.

function y = BilinearQuadElementPStresses(sigma)

R (sigma (1) + sigma(2))/2;

Q ((sigma (1) - sigma(2))/2)°2 + sigma(3)*sigma(3);

M 2*sigma (3) /(sigma (1) - sigma(2));

s1 = R + sqrt(Q);

s2 = R - sqrt(Q);

theta = (atan(M)/2)*180/pi;

y = [s1l ; s2 ; thetal;

end

50

Acknowledgements

I am grateful to my family for their unwavering support, which has been a continual source of strength and
motivation throughout my academic path. Your confidence in me and my aspirations has been crucial to my

success.

I would want to thank my dedicated supervisor, Dr. Neil Fellows, for his important guidance and continuous
support. His expertise and advice were invaluable in steering this project in the proper direction, and I am

grateful for his assistance.

Finally, T must acknowledge my role in this trip. This last year provided many challenges and obstacles,
making completion of this project a genuinely tough venture. Despite these impediments, I persisted and

eventually attained the goal I had set.

I am also very thankful for the opportunity to work on this project, which has expanded my knowledge and
skills, and I look forward to what the future holds.

51

	Abstract
	Highlights
	Introduction
	Concise background information, the project aim and objectives
	Summary of literature review
	Introduction
	Main Body
	Conclusion

	Originality and Contribution
	The approach

	Finite Element Analysis Methodology
	Flow Chart
	Schematic arrangement of the system being analyzed
	Justification for the methods used
	Method Selection
	Finite Element Method (FEM)
	MATLAB Programming
	Relevance
	Availability of Resources
	Method Validation
	Conclusion

	Important mathematical expressions used
	Table of input parameters
	Table of alternative approaches
	Table of limitations

	Results and discussion
	Results
	Problem 1
	Problem 2

	Discussion
	Code Development and Unification
	Flexibility and Efficiency in Computational Methods
	The code's accessibility and educational value
	Combining Various Methodologies
	Conclusion

	Discussion and future work
	References
	Appendix - Code

