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Abstract

In the present research, a solid MATLAB-based method for dynamic finite element analysis with an inter-
active interface for structural problems is presented. The process is started by the user providing important
parameters including element and node counts, material properties, and nodal positions. The behaviour of
an element is defined by natural shape functions, which results in the numerical calculation of the strain
displacement matrix. This code accurately calculates the element stiffness matrix for each element while
taking into account conditions of plane stress or plane strain. Then the creation of a global stiffness matrix
through matrix assembly is performed which was the main challenge.

Then boundary conditions are also provided by the user and are applied to the vectors U and F, after which the
matrix is solved by partitioning and Gaussian elimination to identify unknown displacements and reactions.
Stress vectors are recovered during post-processing for each element, making it easier to calculate principal
stresses and angles. Validation was completed comparing the results given by the code with specialized books
who had problems and answers already developed.

The successful completion of this project places the code as a great teaching tool for students and teachers
wishing to study or teach the Finite Element Method (FEM), providing practical insights into structural
problem-solving.

3



Highlights

• This effectiveness highlights MATLAB’s efficacy as a programming environment for finite element
method implementations.

• Offering a user-friendly interface for inputting problem parameters in Finite Element Method (FEM)
is extremely beneficial in guiding students.

• The successful application of Gaussian integration to improve dynamic analysis accuracy. This not only
demonstrates the project’s sophisticated skills, but also its potential for precisely tackling complicated
real-world structural challenges.

• The incorporation of several numerical calculations into a single comprehensive code to make it more
accessible and user-friendly for both students and engineers.
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1 Introduction

1.1 Concise background information, the project aim and objectives

The aim of this project is to develop an interactive interface that allows users to provide material properties,

specify input loads, and determine if the problem refers to either plane stress or plane strain. The code will

then solve for strains and stresses within the structure.

Objectives:

1. Create a MATLAB program that uses natural shape functions to determine the stiffness matrix for a

single planar quadrilateral element.

2. Create a global stiffness matrix by combining the stiffness matrices and extending the MATLAB method

to solve for two elements initially.

3. Improve the accuracy of the dynamic analysis code by using numerical integration techniques like

Gaussian integration.

4. Create a user-friendly interactive interface for mid-level users to make it easier to utilize the code as a

teaching tool for finite element analysis.

5. Create code documentation.

1.2 Summary of literature review

1.2.1 Introduction

The development of dynamic finite element algorithms for planar quadrilateral elements has received substan-

tial interest in recent years due to its vast applications in structural analysis and design. These algorithms

strive to provide accurate predictions of strains and stresses in various engineering materials under dynamic

loading situations. One critical feature of such codes is their ability to handle both plane stress and plane

strain problems effectively. This literature review delves into the notions of background of FEM, plane stress

and strain, the formulation of the stiffness matrix, and the significance of four-node quadrilateral elements

in dynamic finite element analysis.

1.2.2 Main Body

Our environment is more complicated than what the human mind can process in a single effort. Therefore,

complicated systems are broken down into their individual components or more manageable subdomains

called elements, whose behaviours are simpler to understand. The original system can then be recreated

using these components, allowing one to investigate and analyse its general behaviour. This approach makes

it possible to explore complex systems in a way that is more intuitive and effective, promoting perceptive

comprehension and well-informed decision making (Zienkiewicz et al. 2013). The Finite Element Analysis

(FEA) is an effective computational technique that uses the Finite Element Method (FEM) to solve challeng-

ing engineering systems (Simon-Marinica, Adrian Bogdan et al. 2021). The FEM uses Partial Differential

Equations (PDEs) to analyze finite elements in any given phenomenon (Obumneme et al. 2022). With this

approach, the system is discretized into a set of smaller, manageable components and the equations of motion

for each of these components are then solved. These equations are then combined to give a solution for the

entire system.
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The origins of FEM can be dated back to the mid-twentieth century. The works of Hrennikoff (1941), Courant

(1943), Argyris & Kelsey (1954), Turner et al. (1956), Clough (1960) and Zienkiewicz (1977), highlight

significant aspects of the FEM and are considered important in the development thereof. The term “finite

element” was first used by Ray W. Clough (Selleri 2022). The contributions of these pioneering academics

established the framework for the development and widespread use of the FEM, which has since evolved into

a versatile and powerful tool for tackling complex engineering problems across multiple disciplines. The main

principle behind the finite element approach is to identify an approximate solution to any complex real-life

engineering problem by replacing it with a simpler one (Rao 2018).

The 4-node quadrilateral was first created by Argyris in 1954 as a rectangular panel with reinforced edges.

Taig & Kerr (1964) published a conforming generalisation to arbitrary geometry using quadrilateral-fitted

coordinates already denoted as ξ , η, but running from 0 to 1. Quadrilateral elements are a type of planar

element used in FEA. These elements are isoparametric, which means they can have curved boundaries and

offer more flexibility. In terms of meshing and accuracy, bilinear quadrilateral elements are thought to be

superior to straightforward linear triangular elements in 2-dimensional analysis (Perumal & Mon 2011).

The element stiffness matrix contains all of a finite element’s essential properties. For a structural finite

element, the stiffness matrix holds the geometric and material behaviour details that show the element’s

resistance to deformation under loading (Hutton 2004). It connects nodal forces to displacements and takes

on a different shape depending on the number of degrees of freedom for the element in question (Rees 1997).

We are taking into account a quadrilateral element that is defined by four nodes in natural coordinates

(ξ,η) and we are also considering natural shape functions. These shape functions can be used to determine

the stiffness matrix for the element, as well as to interpolate the nodal values within the element. Natural

coordinates make identifying the element stiffness matrix and putting together the global element matrix

easier (Ferreira 2008).

Two fundamental presumptions used in structural analysis to reduce the complexity of three-dimensional

problems are plane stress and plane strain. The plane stress problems are those of thin plates loaded over

their lateral boundaries by tractions that are uniform across the plate’s thickness or symmetric with respect

to its mid-plane z = 0. On the other hand, the plane strain problems involve long cylindrical bodies with

homogeneous cross sections that are loaded by tractions which are orthogonal to the body’s longitudinal (z)

axis and for each cross section z = const (Lubarda & Lubarda 2020). These assumptions allow for more

efficient and simpler dynamic load analysis of structures.

There is a scarcity of research or material addressing the construction of a dynamic finite element code in

MATLAB for planar quad elements with the precise features and aims mentioned in this project. While

there may be existing literature on the subject, it is possible that the combination of elements such as

an interactive interface, user-defined material properties and loads, and consideration of plane stress or

plane strain concerns has not been substantially researched or recorded. As a result, the research and

development of a dynamic finite element code that incorporates these specific features and objectives in the

context of planar quad elements is required to close the knowledge gap. This may entail researching and

developing appropriate algorithms, data structures, and numerical approaches to handle dynamic analysis,

user interaction, and the needed features. The advantage with MATLAB is that the extensive mathematical

and graphical functionalities eliminate the need to create these functions from scratch or look for appropriate

pre-existing libraries. Due to this, even very straightforward two-dimensional finite element programs in

MATLAB can be effectively stated in a few hundred lines of code, as opposed to the possibly thousands of

lines needed in languages like Fortran or C++.
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Furthermore, comparing the performance, accuracy, and efficiency of the produced code to existing commer-

cial software or analytical solutions will help to close this knowledge gap.

1.2.3 Conclusion

In conclusion, reliable strain and stress predictions in engineering materials under dynamic loading circum-

stances depend greatly on the development of dynamic finite element codes for planar quad elements. The

above review of the literature has given a general overview of the assumptions relating to plane stress and

strain, the creation of the stiffness matrix, and the relevance of planar quad elements in dynamic finite ele-

ment analysis. For a dynamic finite element code to be successfully implemented and be able to handle issues

involving both plane stress and plane strain, it is essential to comprehend these ideas.

By undertaking this project, I have the opportunity to contribute new perspectives, innovative approaches,

and feasible solutions to the field of dynamic finite element analysis for planar quad elements, reducing the

knowledge gap that currently exists and perhaps even enhancing the capabilities of finite element analysis

software in this particular area.

1.3 Originality and Contribution

This research project makes an important contribution to the field of Finite Element Analysis (FEA), notably

in the context of dynamic analysis for planar quad elements. My supervisor laid the groundwork for the

project by developing a code capable of generating the stiffness matrix for a single element. However, the

challenge of extending this capability to additional elements remained unknown territory.

This project’s key innovation is in successfully overcoming this obstacle. I improved the first code to handle

many elements concurrently, which greatly improves its practical utility. By doing so, I enabled engineers and

academics to study complicated systems more accurately and efficiently, which was previously unavailable in

the literature.

Furthermore, my efforts extended beyond code development. Recognizing the need for user-friendly educa-

tional tools in the field of FEA, I turned the code into an interactive interface. Students and practitioners

can use this interface to enter system parameters, define material properties, provide loads, and differentiate

between plane stress and plane strain conditions. The stiffness matrix for each element is then generated, the

global stiffness matrix is assembled, boundary conditions are applied, and strains and stresses are computed.

This instructional tool not only helps students grasp the fundamentals of FEA, but it also simplifies the

actual application of dynamic analysis.

1.4 The approach

The successful implementation of the project’s objectives needed an organized and systematic strategy that

included both code development and user interface design. The following section provides a quick description

of the tactics and methodologies used to attain each objective:

Objective 1: Create a MATLAB program for a single element stiffness matrix: To achieve the

first objective, a MATLAB program was meticulously constructed to compute the stiffness matrix for a single

planar quadrilateral element. The method involved the use of natural shape functions, which allowed for the

precise estimation of the stiffness matrix of the element. The basis for all later goals was laid in this first

step.
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Objective 2: Create a Global Stiffness Matrix for Multiple Elements: The next goal was to design a

process for assembling a global stiffness matrix, building on the success of the single element stiffness matrix.

This was accomplished by extending the MATLAB program to handle several elements. Individual element

stiffness matrices were combined to provide a full global stiffness matrix, which is required for dynamic finite

element analysis.

Objective 3: Improve Accuracy Using Numerical Integration Techniques: In FEM, numerical

integration is widely used. To improve the accuracy of the dynamic analysis code, numerical integration

techniques, particularly Gaussian integration, were used. These strategies were added into the code to

execute integration over the element domain. This process considerably enhanced the precision of strain and

stress estimates, resulting in reliable data for engineering analysis.

Objective 4: Create a User-Friendly Interactive Interface: An interactive interface was created

because it was crucial to have tools that were easy to use for instruction and practical use. Mid-level users

can interactively input system parameters, specify loads, define material attributes, and decide between

conditions for plane stress and plane strain thanks to this user-friendly interface.

Objective 5: Documentation: Creating documentation that not only assists users in using the code but

also educates them on the underlying processes. This dual-purpose documentation seeks to provide users

with the information and skills needed to utilize the code for engineering analysis while also developing a

greater understanding of finite element analysis’s complexities.
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2 Finite Element Analysis Methodology

2.1 Flow Chart

Activity starts

Input number of elements and number of nodes

Input material properties and coordinate positions

Type of plane analysis

Define shape functions

Find strain displacement matrix (B)

Solve for the element stiffness matrix

εz = γzy = γyz = 0

Assemble Global Stiffness Matrix

Apply boundary conditions

Solve the system of equations

by partitioning and Gaussian Elimination

Post-processing: Get reactions and

stresses in each element

Calculate principal stresses and

principal angle for each element

Define shape functions

Find strain displacement matrix (B)

Solve for the element stiffness matrix

σz = τzy = τyz = 0

Assemble Global Stiffness Matrix

Apply boundary conditions

Solve the system of equations

by partitioning and Gaussian Elimination

Post-processing: Get reactions and

stresses in each element

Calculate principal stresses and

principal angle for each element

Plane StressPlane Strain
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The flowchart above describes the methodical approach taken to develop a dynamic Finite Element Analysis

code specifically designed for planar quadrilateral elements. With the help of this code, structural behavior

under dynamic loading situations can be precisely predicted. The flowchart provides a concise, step-by-step

picture of the code’s execution for both Plane Stress and Plane Strain analyses based on the user’s inputs.

Figure 1: Prompts for user inputs at the beginning of the code

Figure 2: Prompts for boundary conditions for the number of nodes given by the user
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Figure 3: Prompt user for the rows and columns to extract submatrix

1. Input parameters: The user starts the process by specifying the number of elements and nodes, as well

as the properties of the material and coordinate positions as shown in Figure 1.

2. Shape Function Definition: Natural shape functions are used to describe the behavior of the elements

3. The strain displacement matrix (B) is calculated by the code to link strains to displacements within

the element.

4. Element Stiffness Matrix: The code solves the element stiffness matrix while taking plane stress or

plane strain conditions into account.

5. Matrix Assembly: The component stiffness matrices are combined to form a global stiffness matrix.

6. Applying the boundary conditions to the vectors U and F.

7. Solve equations: The matrix will be solved by partitioning the global stiffness matrix and Gaussian

elimination to find unknown displacements and reactions.

8. Post-processing: The stress vector is obtained for each element and with that we can get the principal

stresses and angle for each element.

2.2 Schematic arrangement of the system being analyzed

A schematic diagram of the quadrilateral element is shown in Figure 4 (Qianwei et al. 2019). Nodal points

are labelled in an anticlockwise direction and in ascending order. The global coordinates of the four nodes

are given by (x1, y1), (x2, y2), (x3, y3), (x4, y4) and can be seen in Figure 4b. Local coordinates are used to

define element interpolation functions that meet special continuity requirements that may not be met by

global coordinate interpolation (Akin 1994). The element is mapped to a rectangle through the use of the

natural coordinates ξ and η as shown in Figure 4a (Kattan 2008)
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Figure 4: Schematic diagram of the quadrilateral element (a) Quadrilateral master/parent element in ξη-
plane (left). (b) Quadrilateral element in xy-plane (right).

Figure 5: 4 Node Bilinear Quadrilateral

2.3 Justification for the methods used

In this section, a thorough justification for the approaches and techniques used in the construction of the

dynamic finite element algorithm for planar quadrilateral components using MATLAB is presented. The

methodology employed and its relevance to the research objectives is fully addressed.

2.3.1 Method Selection

The creation of this code needs careful consideration of the methodologies utilized for modeling, analysis,

and implementation. An increasing number of engineering applications use mathematical models. Various

models are designed in the field of Elasticity Theory to analyze the behavior of structures in terms of forces,

deformations, and displacements. One-dimensional, two-dimensional, or three-dimensional problem scenarios

can all be addressed using these models. In this project our focus is in the two-dimensional problems where

partial differential equations are used. The difficulty of solving the established model arises as a result of

the attempt to build a model to understand a particular physical occurrence, emphasizing the crucial role of

differential equations in this quest for understanding and resolution. Analytical and/or numerical methods

of resolution are both possible. The Finite Element Method stands out among the other numerical methods

for the scenario stated (Reis & Júnior 2018). This method was chosen based on its suitability for fulfilling

the research objectives:
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2.3.2 Finite Element Method (FEM)

For modeling and simulating structural behavior, the FEM was chosen as the fundamental technique. The

power of the FEM as a numerical analysis tool can be emphasised because with it, it is possible to simulate

physical issues with more complicated boundary conditions. It is a well-known engineering approach, and

its ability to handle complex geometries is one of its greatest advantages. FEM has the ability to accu-

rately estimate solutions to partial differential equations, making it an excellent choice for dynamic analysis.

Furthermore, it may be used to solve complicated problems in science and engineering, demonstrating its

adaptability and usefulness (Buchanan 1995).

2.3.3 MATLAB Programming

The programming environment was chosen because of MATLAB’s adaptability and robust support for nu-

merical computing. For the purpose of implementing the FEM, MATLAB offers a sizable library of functions

for matrix operations, linear algebra, and optimization. In this particular case, the use of MATLAB Symbolic

Math Toolbox, has proven to be a valuable asset in the development of the code for this dissertation project.

The integration of the MATLAB Symbolic Math Toolbox proves to be extremely beneficial, providing a

wide variety of benefits that reach far beyond the scope of simple computation. This computational tool

is an essential component in both teaching and learning techniques, allowing for a deeper understanding

of complicated mathematical concepts. It enables us to effortlessly switch between symbolic and numerical

computation, greatly lowering the laborious load of manual calculations. By utilizing MATLAB’s features, we

can shift our attention to important areas of our research, like figuring out the complex connections between

mathematical models and their counterparts in the real world. MATLAB not only simplifies the computa-

tional process, but it also allows us to go deeper into the core ideas and concepts underlying our dissertation,

thereby improving the rigorousness and accuracy of our study (Ortigoza & Ponce De La Cruz Herrera 2023).

2.3.4 Relevance

The development of this code is especially important given the absence of comprehensive educational resources

for cultivating an adequate knowledge of the Finite Element Method. Students may find FEM challenging

since it frequently requires a strong mathematical foundation, especially when they face FEA and FEM

modules. Many people have trouble remembering linear algebra concepts or understanding the abstract

nature and importance of the equations. This instructional tool fills in this knowledge gap by offering an

approachable framework for understanding the complexities of FEM. Despite the abundance of study and

publications on this topic, existing codes in MATLAB and other programming languages are frequently

dispersed and difficult to understand. As a result, the main goal here is to simplify the learning process and

encourage a deeper comprehension of FEM principles, making them more accessible to both students and

researchers.

2.3.5 Availability of Resources

MATLAB is a great option for implementation because it is widely accessible and simple to use. Academics

and engineers can effectively utilize the code thanks to its user-friendly interface, which promotes wider

acceptance among the engineering community.
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2.3.6 Method Validation

To verify the resilience and dependability of the generated code, the validation procedure was carefully

carried out. In addition to developing a comparative code in Python, particular problem parameters for

planar quadrilateral elements were gathered from authoritative textbooks that gave answers to these difficult

problems. The accuracy and consistency of the MATLAB and Python implementations were then evaluated

systematically against these known parameter ranges. This validation technique not only strengthens the

code’s legitimacy, but also establishes its ability to handle complex planar quad element challenges.

2.3.7 Conclusion

In conclusion, the approaches used to construct the dynamic finite element code for planar quadrilateral

components using MATLAB are well-justified. The finite element method has been chosen as the main

computational method since it is inherently relevant to this research project. A variety of complicated

problems involving forces, deformations, and structural displacements have been successfully addressed by this

highly recognized structural mechanics method. It is a great option for fulfilling the projects objectives due to

its versatility to various material models, boundary conditions, and element types. The use of the MATLAB

programming language in this project provides useful insights into FEM programming (Chessa 2002). On top

of that, the synergy between MATLAB’s large mathematical libraries and FEM’s programming capabilities

makes it the ideal mix for creating a powerful teaching tool for students. By utilizing this synergy, this

initiative advances structural analysis while also making it easier to understand the mathematical foundations

of FEM, making it relevant and approachable to the educational community.

2.4 Important mathematical expressions used

The interpolation functions for the coordinates are:

x =

4∑
i=1

Nixi; y =

4∑
i=1

Niyi; (1)

Since the element is isoparametric, the following equations describe the relationship between local and global

coordinate systems:

x = N1x1 +N2x2 +N3x3 +N4x4 (2)

y = N1y1 +N2y2 +N3y3 +N4y4 (3)

The shape functions for a bilinear quadrilateral element in terms of natural coordinates given by (Kattan

2008) are:

N1 =
1

4
(1− ξ)(1− η) (4)

N2 =
1

4
(1 + ξ)(1− η) (5)

N3 =
1

4
(1 + ξ)(1 + η) (6)

N4 =
1

4
(1− ξ)(1 + η) (7)
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The Strain Displacement Matrix [B] is given by:

[B] =
1

|J |
[B1, B2, B3, B4] (8)

The determinant |J | is given by:

|J | = 1

8
[x1, x2, x3, x4]


0 1− η η − ξ ξ − 1

η − 1 0 ξ + 1 −ξ − η

ξ − η −ξ − 1 0 η + 1

1− ξ ξ + η −η − 1 0

 (9)

Where [Bi] is given by:

[Bi] =


a δNi

δξ −b δNi

δη 0 0

0 0 c δNi

δη −d δNi

δξ

c δNi

δη d δNi

δξ a δNi

δξ −b δNi

δη

 (10)

The parameters a,b,c, and d are given by:

a =
1

4
[y1( ξ − 1) + y2(−1− ξ) + y3(1 + ξ) + y4(1− ξ)] (11)

b =
1

4
[y1( η − 1) + y2(1− η) + y3(1 + η) + y4(−1− η)] (12)

c =
1

4
[x1( η − 1) + x2(1− η) + x3(1 + η) + x4(−1− η)] (13)

d =
1

4
[x1( ξ − 1) + x2(−1− ξ) + x3(1 + ξ) + x4(1− ξ)] (14)

For plane stress the matrix [D] is given by:

[D] =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (15)

For plane strain the matrix [D] is given by:

[D] =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

 (16)

To solve for the element stiffness matrix using natural coordinates, we must integrate the following expression:

[k] = t

∫ 1

−1

∫ 1

−1

[B]T [D][B] |J | dξdη (17)

where [B]T is the transpose of the strain displacement matrix [B] and [D] is the material matrix. The strain
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displacement matrix [B] and the Det(J)

The following structure equation results from obtaining the global stiffness matrix K:

[K] {U} = {F} (18)

where U is the global nodal displacement vector and F is the global nodal force vector. The stress vector is

produced for each element using the approach that follows after the unknown displacements and reactions

have been identified:

{σ} = [D] [B] {u} (19)

where σ is the stress vector in the element (of size 3 × 1) and u is the 8 × 1 element displacement vector.

The vector σ is written for each element as:

{σ} =


σx

σy

τxy

 (20)

2.5 Table of input parameters

Symbol Parameter

E Young’s modulus

υ Poisson’s ratio

t Element Thickness

ε =


εx

εy

γxy

 Plane Strain

σ =


σx

σy

τxy

 Plane Stress

Table 1: Input Parameters

Node I ξI ηI

1 -1 -1

2 1 -1

3 1 1

4 -1 1

Table 2: Nodal coordinates in the parametric element
domain (Fish & Belytschko 2007)
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2.6 Table of alternative approaches

Alternative Description Justification of Approach

Alternative 1

Instead of using MATLAB, write
the dynamic finite element code in
Python. For this solution, it would
be necessary to investigate the Python
libraries and tools that are available
for finite element analysis and modify
the code implementation accordingly.

Python provides a variety of strong
libraries and tools for scientific
computing and numerical analysis,
allowing for flexibility and possibly
improving performance. It is very
user friendly and intuitive. It is
also open source which gives us a
wide range of libraries we can used
for the project
(Nazaruddin & Siallagan 2021).

Alternative 2

Instead of writing new code, use a
commercial finite element analysis
programme that is already available.
This method entails choosing an
appropriate software package that
supports planar quad elements and has
the required features and functionalities.

Commercial software solutions
frequently have a long history,
have undergone significant testing,
and include a wide range of capabilities
for dynamic analysis. Utilising such
software can speed up development,
provide access to cutting-edge features,
and provide technical assistance.
(Khennane 2013)

Alternative 3

Examine the viability of
implementing artificial intelligence
or machine learning methods
(Pan et al. 2021) into the dynamic
finite element code. Investigating
how these innovative techniques
might improve the analysis’s
precision, effectiveness, and
automation could potentially
create new opportunities for the
project.

The accuracy and effectiveness of
the dynamic analysis may be
improved by integrating machine
learning or AI approaches, which
can also lead to improvements in
data-driven modelling, optimisation,
and automation (Jung et al. 2022).
This alternative could be
complemented by the Alternative 1
of doing it in python.

Table 3: Table of alternative approaches
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2.7 Table of limitations

Assumption/Limitation Description/Impact of the assumption on outcomes

Limited to bilinear quadrilateral
elements

The project might not be suitable to problems with three
dimensions. For complex geometries or structures that
planar quad elements are unable to effectively portray,
the accuracy of the results may be affected. It is a very
specific approach to a certain problem.

Assumes linear variation
across the element

Linear variation across a bilinear quadrilateral element can be
described by the following function in terms of Cartesian
coordinate:
f(x, y) = a1 + a1x+ a3y + a4xy

In a FE analysis, the
displacements are more
accurate than the calculated
stresses

The displacements are carefully calculated by inverting the
stiffness matrix at the nodal positions (integration points).
The shape function is used to approximate the
displacements within the elements. Because strains and
stresses are calculated from displacements, they are less
precise.

Need smaller elements to
get good stress results

If the element size is relatively large, the accuracy of the
stress results may suffer. To more properly reflect localized
stress variations, smaller elements may be needed.

Table 4: Table of limitations
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3 Results and discussion

3.1 Results

The complete code is located in Appendix A and it is tested against problems found in (Kattan 2008) where

the results are compared to make sure they are correct.

3.1.1 Problem 1

Figure 6: Thin plate for problem 1

Figure 7: Discretization of Thin plate for problem 1 using two bilinear quadrilaterals

Given E = 210 GPa, υ = 0.3, t = 0.025 m, and w = 3000 kN/m2 and the nodal positions of element 1 and

element 2:

Element 1 =



x1

y1

x2

y2

x3

y3

x4

y4


=



0

0

0.25

0

0.25

0.25

0

0.25


Element 2 =



x1

y1

x2

y2

x3

y3

x4

y4


=



0.25

0

0.5

0

0.5

0.25

0.25

0.25



Determine:

1. Global stiffness matrix [K]

2. Horizontal and vertical displacements at node 3 and 6 {U}

3. The reactions at nodes 1 and 4 {F}
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Element number Node i Node j Node m Node n

1 1 2 5 4
2 2 3 6 5

Table 5: Element connectivity

4. The stresses in each element σx, σy, τxy

5. The principal stresses and principal angle for each element σ1, σ2, θp

Figure 8: Global stiffness matrix for problem 1

The F global nodal force vector is:

F1x = -9.3750

F1y = -1.9741

F2x = 0.0000

F2y = 0.0000

F3x = 9.3750

F3y = 0.0000

F4x = -9.3750

F4y = 1.9741
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F5x = 0.0000

F5y = 0.0000

F6x = 9.3750

F6y = 0.0000

The U global nodal displacement vector is:

U1x = 0.0000e+00

U1y = 0.0000e+00

U2x = 3.4395e-06

U2y = 6.3181e-07

U3x = 7.0300e-06

U3y = 5.0321e-07

U4x = 0.0000e+00

U4y = 0.0000e+00

U5x = 3.4395e-06

U5y = -6.3181e-07

U6x = 7.0300e-06

U6y = -5.0321e-07

The element nodal displacement vectors u1 and u2 have the stresses σx, σy, τxy:

For u1:

sigma_x = 3000

sigma_y = 369.2797

tau_xy = 0

For u2:

sigma_x = 3000

sigma_y = -53.4178

tau_xy = 0

Principal Stresses for σ1 and σ2 and principal angle θp:

sigma1:

s1 = 3000

s2 = 369.2797

Theta = 0

sigma2:

s1 = 3000

s2 = -53.4178

Theta = 0

When these results are compared to those reported in the reference book, a significant similarity is noticed.

This congruence confirms the robustness and accuracy of the developed code, certifying its functionality.

3.1.2 Problem 2

Given E = 210 GPa, υ = 0.3, t = 0.025 m, and w = 100 kN/m2 for the three elements shown in Figure 9:
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Figure 9: Thin Plate with a Distributed Load and a Concentrated Load for problem 2

Figure 10: Discretization of Thin Plate Using Three Bilinear Quadrilaterals Elements for problem 2

Element 1 =



x1

y1

x2

y2

x3

y3

x4

y4


=



0

0

0.25

0

0.25

0.25

0

0.25


Element 2 =



x1

y1

x2

y2

x3

y3

x4

y4


=



0.25

0

0.5

0

0.5

0.25

0.25

0.25


Element 3 =



x1

y1

x2

y2

x3

y3

x4

y4


=



0

0.25

0.25

0.25

0.25

0.5

0

0.5



Element number Node i Node j Node m Node n

1 1 2 5 4
2 2 3 6 5
3 4 5 8 7

Table 6: Element connectivity

Determine:
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1. Global stiffness matrix [K]

2. Horizontal and vertical displacements at each node {U}

3. The reactions at nodes 1,4 and 7 {F}

4. The stresses in each element σx, σy, τxy

5. The principal stresses and principal angle for each element σ1, σ2, θp

Figure 11: Global stiffness matrix for problem 2

The F global nodal force vector is:

F1x = 6.3994

F1y = 4.3354

F2x = 0.0000

F2y = 0.0000

F3x = 0.0000

F3y = 0.0000

F4x = -0.2988

F4y = 3.6296

F5x = 0.0000

F5y = -12.5000
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F6x = 0.0000

F6y = 0.0000

F7x = -6.1006

F7y = 4.5350

F8x = 0.0000

F8y = 0.0000

The U global nodal displacement vector is:

U1x = 0.0000e+00

U1y = 0.0000e+00

U2x = -1.3961e-06

U2y = -3.5363e-06

U3x = -1.3286e-06

U3y = -5.4055e-06

U4x = 0.0000e+00

U4y = 0.0000e+00

U5x = 1.8083e-08

U5y = -4.2163e-06

U6x = 8.5585e-08

U6y = -5.1755e-06

U7x = 0.0000e+00

U7y = 0.0000e+00

U8x = 1.2021e-06

U8y = -3.0103e-06

The element nodal displacement vectors u1, u2 and u3 have the stresses σx, σy, τxy:

For u1:

sigma_x = -730.1786

sigma_y = -504.6593

tau_xy = -1023.9005

For u2:

sigma_x = 0

sigma_y = -189.0038

tau_xy = 0

For u3:

sigma_x = 730.1786

sigma_y = 725.6064

tau_xy = -976.0995

Principal Stresses for σ1, σ2 and σ3 and principal angle θp:

sigma1:

s1 = 412.6718

s2 = -1647.5098

Theta = 41.8577

sigma2:
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s1 = 0

s2 = -189.0038

Theta = 0

sigma3:

s1 = 1703.9946

s2 = -248.2097

Theta = -44.9329

The developed code was validated further by applying it to a different problem. The code’s results revealed

amazing consistency with the reference book, confirming its dependability and correctness in generating

accurate solutions.

3.2 Discussion

The fundamental product of the project in this dissertation is the code developed, which reflects the realisation

of our objectives. The code can be found in its totality under Appendix A. While we have previously presented

an overview of the methodology process of FEM and what was aspired to achieve, it is important to recognise

that the code’s complexities and details surpass the conciseness of the previous explanations. In order to

clarify and understand the specifics of the code’s functionality, the code’s internal workings are examined in

this part.

The user is first prompted by the code for input values needed for the FE problem as shown in Figures

1,2 and 3. Users are asked to provide the total number of elements and nodes as well as some material

characteristics, such as Young’s modulus, Poisson’s ratio, and element thickness. The user is also required to

enter coordinates for the element nodes the problem type (Plane Stress or Plane Strain). Another important

prompt is presented to the user which is to input the node numbers for each element. Remember that the

planar quad element has four nodes and the order of the nodes for each element is important. The direction

must be anticlockwise. To make things easier, default values are offered.

Meanwhile the global stiffness matrix K is initialised in the code as a zero matrix. The number of nodes

determines the size of this matrix, K size. Additionally, the stiffness matrices for each individual element

are created in a cell array called K elements.

The function enters a loop with the user’s inputs to handle each element. This loop begins by gathering data

from the input such as material characteristics, element connection (nodal information), and coordinates for

every element.

Each finite element’s stiffness matrix is determined by the code. It gets the strain-displacement matrix (B)

from the differentials of the natural shape functions, as indicated in eq. 8. Calculations are also made for the

Jacobian’s determinate. Based on the type of problem the user entered, the material matrix is generated.

The final element stiffness matrix is computed with MATLAB using eq. 17. The stiffness matrix of each

element is then stored in a dynamic variable and the cell array K elements.

The method enters a second loop after getting stiffness matrices for each element to combine these stiffness

matrices into the K global stiffness matrix. It adds contributions from each element to the relevant positions

in K using the function assembleStiffness (Kattan 2008) which is defined at the end of the code.

The global stiffness matrix K is displayed. This matrix serves as a representation of the complete system

and includes details on the connections between each node in the structure.
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The user must enter both known and unknown nodal displacements (U) and forces (F) using the code as

shown in Figure 2. Users are prompted to enter values directly for known values, whereas variable names

like U1x, U1y, etc. are offered as placeholders for unknown values.

In order to facilitate subsequent calculations, the user-provided data for nodal displacements and forces are

processed and arranged into cell arrays. This is carried out for both U (displacements) and F (forces).The

code then generates reduced vectors for nodal displacements (U) by deleting all known values, resulting in

just the unknown displacements being selected. These reduced vectors are shown.

To solve the system of equations, the code employs the global stiffness matrix K and the known forces (F).

The user is asked to enter the rows and columns from K that must be extracted based on the unknown values

in U. The system of equations is solved using Gaussian elimination. To find the unknown displacements, the

backslash operator (\) is used in MATLAB.

The code displays the unknown displacements derived from solving the equation system. Variables in the

workspace are assigned to the unknown displacements for the next calculations.

Subsequently, the code then enters a post-processing step in which it computes stresses for each element. It

initially collects nodal displacement vectors before calculating stresses based on the material characteristics

and geometry of the element. For readability, the code rounds small numbers to zero. Then it computes the

principal stresses and angles for each element with the function BilinearQuadElementPStresses (Kattan

2008). The results are displayed with small numbers rounded to zero for clarity.

The actual code provided in Appendix A is commented so the user has better understanding on what is

happening in each step. Having explained the code, the rest of the discussion will be organised around a few

important matters.

3.2.1 Code Development and Unification

The development of a code for Finite Element specifically designed for planar quad elements was the foun-

dational aspect of this dissertation topic. The code’s conception was founded on a thorough analysis of the

various publications listed throughout this dissertation. The aim was to construct a single, user-friendly

MATLAB-based code that could be executed to efficiently address a variety of structural mechanics issues

by combining these multiple sources.

3.2.2 Flexibility and Efficiency in Computational Methods

There are many different ways to approach a problem in the world of coding. Although the code is fully

operational and capable of producing accurate results, it is critical to recognise that there are other functions,

approaches or programming languages where this code can improve. As a result, even at this point, where

the code is functional, there are still opportunities for refinement and optimisation. Finding and applying

these improvements could make the code even more user-friendly and efficient in the future.

3.2.3 The code’s accessibility and educational value

The potential of the generated FE code to be used as a teaching aid is one noteworthy feature. Recognising

that not all users will be familiar with MATLAB or the Finite Element method for dealing with planar quad

elements, the code was designed to provide insight into the underlying processes. Careful study of the code

can give a coherent picture of the problem-solving steps involved, even to a student or rookie.
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3.2.4 Combining Various Methodologies

Despite the fact that the FEM is a method that is well known and frequently used in the field of structural

mechanics, it is important to emphasise how adaptable and versatile the method is. The majority of FEM

materials offer a broad framework for problem-solving, however when using this approach with various element

types, variations appear. In this dissertation approaches and insights were gathered from a variety of literature

sources and combined into a single tool designed specifically for planar quad components. By doing this,

we hoped to offer a comprehensive body of information that could be used for both academic and practical

purposes. While the fundamental mathematics stay constant, the interpretations and explanations offered in

books and papers change dramatically. Therefore, it seems like a good idea to compile this knowledge into a

single, easily available resource that is aimed towards a level that is more understandable for students.

3.2.5 Conclusion

This dissertation, in retrospect, shows a thorough journey through the field of finite element analysis and the

resolving of structural problems. The first objective was to create a customised MATLAB code for planar

quadrilateral elements (starting with one element), which was successfully created. The challenge did not

end there, though; it continued to include the creation of a global stiffness matrix combining more than

one element, which enabled us to take on more complex structural problems. The dynamic analysis was

remarkably precise thanks to the integration of numerical techniques like Gaussian integration.

The ability to turn our code into a user-friendly, interactive interface is one of the biggest accomplishments

of this project. This change makes it a helpful educational tool for anyone attempting to understand the

complexity of finite element method. Furthermore, careful consideration was given to readability and com-

prehension by including detailed code documentation.

It’s important to note that people interacting with this code should ideally have a basic understanding of

finite element methods due to the technical nature of the subject matter. This precondition is particularly

important in parts where users are asked to provide rows and columns for the global stiffness matrix’s sub-

matrix extraction (e.g., % Prompt user for the rows and columns to extract sub-matrix using inputdlg).

Although the code does shed light on how the U vector is built, users who are already familiar with matrices

will be better able to identify the precise rows and columns required for extraction.

Finally, this work demonstrates the limitless possibilities of finite element methodologies. It not only fills

the gap between theory and application in the real world, but it also encourages creativity in engineers,

researchers, and students who are faced with difficult structural problems.
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4 Discussion and future work

This chapter’s conclusion serves as a summary analysis of the findings presented throughout the report. As

expected, our main objective was accomplished; the created code correctly applies the finite element method

to a wide range of planar quad element problems. This success demonstrates the code’s usefulness in real

world applications.

In the future, there is room for improvement. While the current code successfully communicates with users

via dialogue boxes, the logical next step is to develop a specific MATLAB application. This would add to

the code’s strong mathematical base by providing a more user-friendly and visually appealing interface.

The automated partitioning stage is another area that could use improvement. The search for simpler,

automated methods should nevertheless be pursued even though this currently requires user involvement. It

is an opportunity that could further improve the code’s effectiveness and usability even though it is not yet

effectively implemented.

We also need to take into account the exciting possibilities of languages like Julia or Python. These languages

are attractive choices for future development because they offer a flexible toolkit for creating interactive and

user-friendly applications. Compared to MATLAB, their open-source nature provides global access, and their

automation capabilities further increase their attractiveness.

The importance of giving consumers a greater knowledge of the underlying mathematics cannot be overstated,

even though it is outside the scope of this study. By providing understanding of the intricate nature of

computation, this might greatly increase the code’s value and make it an even more useful teaching tool. The

field’s continual evolution is reflected in these potential developments, creating the opportunity for constant

growth and enhancement.
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A Appendix - Code

The following code sets up and solves a FE problem for a 2D structure with user defined material properties,

element connectivity, nodal displacements, and forces.

1 % Prompt user for both inputs in a single dialog box

2 prompt = {'\fontsize {13} Enter the number of elements:', '\fontsize {13}
Enter the number of nodes:'};

3 dlgtitle = 'Input ';
4 dims = [1 45];

5 definput = {'', ''}; % Default values (empty)

6 opts.Interpreter = 'tex';
7 answer = inputdlg(prompt , dlgtitle , dims , definput ,opts);

8

9 if isempty(answer)

10 error('User canceled the input.');
11 end

12

13 % Extract the inputs

14 num_elements = str2double(answer {1});

15 num_nodes = str2double(answer {2});

16

17 % Calculate the size of the global stiffness matrix K

18 K_size = 2 * num_nodes;

19

20 % Initialize the global stiffness matrix K as a zero matrix

21 K = zeros(K_size , K_size);

22

23 % Initialize a cell array to store stiffness matrices for each element

24 K_elements = cell(num_elements , 1);

25

26 % Loop through each element

27 for element_idx = 1: num_elements

28 % Input for the current element

29 prompt = ["\ fontsize {13} Enter young 's modulus value for element " +

num2str(element_idx), ...

30 "\ fontsize {13} Enter poisson 's ratio for element " + num2str(

element_idx), ...

31 "\ fontsize {13} Enter element thickness for element " +

num2str(element_idx), ...

32 "\ fontsize {13} What type of problem is it? (Plane Stress or

Plane Strain) for element " + num2str(element_idx), ...

33 "\ fontsize {13} Enter the coordinate positions for element " +

num2str(element_idx) + ": "];

34 dims = [1 55];

35 definput = {'210e6', '0.3', '0.025 ', 'Plane Stress ', '
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0;0;0.25;0;0.25;0.25;0;0.25 '};
36 opts.Interpreter = 'tex';
37 answer = inputdlg(prompt , dlgtitle , dims , definput , opts);

38

39 if isempty(answer)

40 error('User canceled the input.');
41 end

42

43 % Extract input values from the answer cell aray

44 E = str2double(answer {1});

45 nu = str2double(answer {2});

46 t = str2double(answer {3});

47 problem_type = answer {4};

48 P = str2num(answer {5}); %#ok<ST2NM > % Convert the string to a numeric

vector

49

50 % Prompt the user for element connectivity (nodes i, j, m, and n)

51 % connectivity_prompt = 'Enter the node numbers (i, j, m, n) for

element:';
52 % connectivity_answer = inputdlg(connectivity_prompt , dlgtitle , dims);

53 connectivity_prompt = {'\fontsize {13} Enter the node numbers (i, j, m,

n) for element:'};
54 dlgtitle = 'Input ';
55 dims = [1 55];

56 definput = {''}; % Default values (empty)

57 opts.Interpreter = 'tex';
58 connectivity_answer = inputdlg(connectivity_prompt , dlgtitle , dims ,

definput ,opts);

59

60 if isempty(connectivity_answer)

61 error('User canceled the input.');
62 end

63

64 % Extract node numbers from the connectivity answer and convert to

numeric values

65 node_inputs = str2num(connectivity_answer {1}); %#ok<ST2NM >

66

67 % Check if the number of inputs is valid

68 if numel(node_inputs) ~= 4

69 error('Invalid input for node numbers. Please provide four node

numbers.');
70 end

71

72 % Assign node numbers to individual variables

73 i_node = node_inputs (1);
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74 j_node = node_inputs (2);

75 m_node = node_inputs (3);

76 n_node = node_inputs (4);

77

78 % Store the connectivity information in the element_connectivity

matrix

79 element_connectivity(element_idx , :) = [i_node , j_node , m_node , n_node

];

80

81 % element_connectivity (1, :) to access the nodes for each element

82

83 % Assign nodal positions to individual variables

84 x1 = P(1);

85 y1 = P(2);

86 x2 = P(3);

87 y2 = P(4);

88 x3 = P(5);

89 y3 = P(6);

90 x4 = P(7);

91 y4 = P(8);

92

93 % Display the input values

94 fprintf ("Young 's Modulus: %.2f Pa\n",E);

95 fprintf ("Poisson 's Ratio: %.2f\n",nu);

96 fprintf (" Element thickness: %.4f meters\n",t);

97 fprintf (" Problem Type: %s\n", problem_type);

98 fprintf('Coordinate Positions :\n');
99 fprintf('x1 = %.3f, y1 = %.3f\n', x1, y1);

100 fprintf('x2 = %.3f, y2 = %.3f\n', x2, y2);

101 fprintf('x3 = %.3f, y3 = %.3f\n', x3, y3);

102 fprintf('x4 = %.3f, y4 = %.3f\n', x4, y4);

103

104

105 % Determining the element stiffness matrix for a quadrilateral element

106 % using natural shape functions (element edges aligned with axes)

107

108 % The natural shape functions for a bilinear four node quadrilateral

109 % element are:

110 syms xi eta;

111 N1 = (1-xi)*(1-eta)/4;

112 N2 = (1+xi)*(1-eta)/4;

113 N3 = (1+xi)*(1+ eta)/4;

114 N4 = (1-xi)*(1+ eta)/4;

115

116 % Find Strain Displacement Matrix (B)
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117 x = N1*x1 + N2*x2 + N3*x3 + N4*x4;

118 y = N1*y1 + N2*y2 + N3*y3 + N4*y4;

119

120 % These need to be differentiated with respect to xi and eta:

121 xxi = diff(x,xi);

122 xeta = diff(x,eta);

123 yxi = diff(y,xi);

124 yeta = diff(y,eta);

125

126 % The determinate of the Jacobian (Det(J)) is given by:

127 J = xxi*yeta - yxi*xeta;

128

129 % The differentials of N1,N2,N3,N4 with respect to xi and eta are

given by:

130 N1xi = diff(N1 ,xi);

131 N2xi = diff(N2 ,xi);

132 N3xi = diff(N3 ,xi);

133 N4xi = diff(N4 ,xi);

134 N1eta = diff(N1 ,eta);

135 N2eta = diff(N2 ,eta);

136 N3eta = diff(N3 ,eta);

137 N4eta = diff(N4 ,eta);

138

139 % The strain displacement matrix is given by:

140 B11 = yeta*N1xi - yxi*N1eta;

141 B12 = 0;

142 B13 = yeta*N2xi - yxi*N2eta;

143 B14 = 0;

144 B15 = yeta*N3xi - yxi*N3eta;

145 B16 = 0;

146 B17 = yeta*N4xi - yxi*N4eta;

147 B18 = 0;

148 B21 = 0;

149 B22 = xxi*N1eta - xeta*N1xi;

150 B23 = 0;

151 B24 = xxi*N2eta - xeta*N2xi;

152 B25 = 0;

153 B26 = xxi*N3eta - xeta*N3xi;

154 B27 = 0;

155 B28 = xxi*N4eta - xeta*N4xi;

156 B31 = xxi*N1eta - xeta*N1xi;

157 B32 = yeta*N1xi - yxi*N1eta;

158 B33 = xxi*N2eta - xeta*N2xi;

159 B34 = yeta*N2xi - yxi*N2eta;

160 B35 = xxi*N3eta - xeta*N3xi;
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161 B36 = yeta*N3xi - yxi*N3eta;

162 B37 = xxi*N4eta - xeta*N4xi;

163 B38 = yeta*N4xi - yxi*N4eta;

164 B = [B11 B12 B13 B14 B15 B16 B17 B18 ;

165 B21 B22 B23 B24 B25 B26 B27 B28 ;

166 B31 B32 B33 B34 B35 B36 B37 B38];

167

168 % Perform calculations based on the problem type

169 % Get the material matrix:

170 % Plane Stress

171 if strcmpi(problem_type , 'Plane Stress ')
172 D = (E/(1-nu*nu))*[1, nu, 0 ; nu, 1, 0 ; 0, 0, (1-nu)/2];

173 % Plane Strain

174 elseif strcmpi(problem_type , 'Plane Strain ')
175 D = (E/(1+nu)/(1-2*nu))*[1-nu, nu, 0 ; nu, 1-nu, 0 ; 0, 0, (1-2*nu)

/2];

176 end

177

178 % The final element stiffness matrix when integrated becomes:

179 BD = transpose(B)*D*B/J;

180 r = int(int(BD, eta , -1, 1), xi, -1, 1);

181 z = t*r;

182 w = double(z);

183

184 % Store the stiffness matrix in a dynamic variable (k1, k2, k3, etc.)

185 k_name = ['k', num2str(element_idx)]; % Generate the variable name

186 eval([k_name , ' = w;']); % Assign the stiffness matrix to the variable

187

188 % Store the stiffness matrix in the cell array

189 K_elements{element_idx} = w;

190 end

191

192 % You now have stiffness matrices for all elements in K_elements cell

array

193 % Access them using K_elements{element_idx}

194

195 % Now you have stiffness matrices for all elements in K_elements cell

array

196

197

198 % Loop through each element to compute and assemble the stiffness matrix

199 for element_idx = 1: num_elements

200 % Compute the stiffness matrix for the current element (k1, k2, etc.)

201 k_name = ['k', num2str(element_idx)];

202 k = eval(k_name); % Retrieve k1, k2, etc.
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203

204 % Retrieve element connectivity information (I, j, m, n) for the

current element

205 i = element_connectivity(element_idx , 1);

206 j = element_connectivity(element_idx , 2);

207 m = element_connectivity(element_idx , 3);

208 n = element_connectivity(element_idx , 4);

209

210 % Call the assembleStiffness function to update the global stiffness

matrix K

211 K = assembleStiffness(K, k, i, j, m, n);

212 end

213

214 % Now , K contains the assembled global stiffness matrix

215 % Display the global stiffness matrix K

216 disp('Global Stiffness Matrix K:');
217 disp(K);

218

219 % Prompt user for known and unknown displacements (U) and forces (F) for

each node

220 U = cell(2 * num_nodes , 1); % Initialize U as a cell array

221 F = cell(2 * num_nodes , 1); % Initialize F as a cell array

222

223 for node_idx = 1: num_nodes

224 % Prompt user for displacements Ux and Uy for each node

225 prompt = {['\fontsize {13} Enter ' 'U' num2str(node_idx) 'x' ' :'], ...

226 ['\fontsize {13} Enter ' 'U' num2str(node_idx) 'y' ' :'], ...

227 ['\fontsize {13} Enter ' 'F' num2str(node_idx) 'x' ' :'], ...

228 ['\fontsize {13} Enter ' 'F' num2str(node_idx) 'y' ' :']};
229 dims = [1 45];

230 definput = {['U' num2str(node_idx) 'x'], ['U' num2str(node_idx) 'y'],
...

231 ['F' num2str(node_idx) 'x'], ['F' num2str(node_idx) 'y']};
232 opts.Interpreter = 'tex';
233 answer = inputdlg(prompt , dlgtitle , dims , definput , opts);

234

235 if isempty(answer)

236 error('User canceled the input.');
237 end

238

239 % Extract input values from the answer cell array

240 Ux = answer {1};

241 Uy = answer {2};

242 Fx = answer {3};

243 Fy = answer {4};
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244

245

246 % Save the input values as variables

247 assignin('base', ['U' num2str(node_idx) 'x'], Ux);

248 assignin('base', ['U' num2str(node_idx) 'y'], Uy);

249 assignin('base', ['F' num2str(node_idx) 'x'], Fx);

250 assignin('base', ['F' num2str(node_idx) 'y'], Fy);

251

252 % Update the global nodal displacement vector (U) and force vector (F)

253 U{2 * node_idx - 1} = Ux;

254 U{2 * node_idx} = Uy;

255 F{2 * node_idx - 1} = Fx;

256 F{2 * node_idx} = Fy;

257 end

258

259 % Now , U contains the global nodal displacement vector and F contains the

global nodal force vector

260 % Display the global nodal displacement vector and force vector

261 fprintf('Global Nodal Displacement Vector (U):\n');
262 num_nodes = numel(U) / 2;

263 for i = 1: num_nodes

264 node_idx = ceil(i);

265

266 % Display x component of displacement

267 fprintf('Node %dx: %s\n', node_idx , U{2*i - 1});

268

269 % Display y component of displacement

270 fprintf('Node %dy: %s\n', node_idx , U{2*i});

271 end

272

273 fprintf('Global Nodal Force Vector (F):\n');
274 for i = 1: num_nodes

275 node_idx = ceil(i);

276

277 % Display x component of force

278 fprintf('Node %dx: %s\n', node_idx , F{2*i - 1});

279

280 % Display y component of force

281 fprintf('Node %dy: %s\n', node_idx , F{2*i});

282 end

283

284 % Initialize a reduced U cell array

285 reduced_U = {};

286

287 % Iterate through the U vector

40



288 for i = 1: numel(U)

289 % Check if the element starts with 'U' (indicating it 's an unknown

variable)

290 if strncmp(U{i}, 'U', 1)

291 reduced_U{end+1} = U{i};

292 end

293 end

294

295 % transpose the reduced_U

296 reduced_U = reduced_U ';
297

298 % Display the transposed reduced U vector

299 disp(reduced_U);

300

301 % Initialize the reduced force vector

302 reduced_F = [];

303

304 % Iterate through the F cell array

305 for i = 1: numel(F)

306 % Check if the element is a numeric string

307 if ~isnan(str2double(F{i}))

308 % Convert the numeric string to a double and append to reduced_F

309 reduced_F(end+1) = str2double(F{i});

310 end

311 end

312

313 % Display the reduced_F vector

314 disp('Reduced Force Vector (F):');
315 disp(reduced_F);

316

317 % Prompt user for the rows and columns to extract sub -matrix using

inputdlg

318 prompt_rows = {'Enter rows (e.g., 3:6 ,9:12):'};
319 prompt_cols = {'Enter columns (e.g., 3:6 ,9:12):'};
320 dlgtitle = 'Enter Row and Column Indices ';
321 dims = [1 60];

322 definput = {'3:6 ,9:12', '3:6 ,9:12'}; % Default values (example)

323 opts.Interpreter = 'tex';
324

325 row_indices_str = inputdlg(prompt_rows , dlgtitle , dims , definput , opts);

326 col_indices_str = inputdlg(prompt_cols , dlgtitle , dims , definput , opts);

327

328 if isempty(row_indices_str) || isempty(col_indices_str)

329 error('User canceled the input.');
330 end
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331

332 % Convert the user input strings to numeric row and column indices

333 row_indices = eval(['[' row_indices_str {1} ']']);
334 col_indices = eval(['[' col_indices_str {1} ']']);
335

336 % Extract the sub -matrix from K based on the specified row and column

indices

337 submatrix = K(row_indices , col_indices);

338

339 % Display the extracted sub -matrix

340 fprintf('Extracted Sub -Matrix from K:\n');
341 disp(submatrix);

342

343 % Solve the system of equations u = submatrix\reduced_F (gaussian

344 % elimination with MATLAB) The backlash operator "\" is used for that in

MATLAB

345 % I transpose reduced_F to match the sizes of the matrices

346 u = submatrix \ reduced_F ';
347

348

349 % show the solution for the system of equations

350 fprintf('The unknown displacements in reduced_U are:\n');
351

352 for i = 1: numel(reduced_U)

353 fprintf('%s = %.4e\n', reduced_U{i}, u(i));

354

355 % Create variables with the respective results

356 variable_name = reduced_U{i};

357 assignin('base', variable_name , u(i));

358 end

359

360

361 % Post processing

362

363 % Initialize a cell array to store the global nodal displacement vector U

364 U = cell(2 * num_nodes , 1);

365

366 % Loop through each node to construct the global nodal displacement vector

U

367 for node_idx = 1: num_nodes

368 % Use evalin to fetch the known values for Ux and Uy from the

workspace

369 Ux = evalin('base', ['U' num2str(node_idx) 'x']);
370 Uy = evalin('base', ['U' num2str(node_idx) 'y']);
371
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372 % Create cell array entries for Ux and Uy

373 U{2 * node_idx - 1} = (Ux);

374 U{2 * node_idx} = (Uy);

375 end

376

377 % Now , U contains the complete global nodal displacement vector

378 % Display the global nodal displacement vector

379 fprintf('Global Nodal Displacement Vector (U):\n');
380 num_nodes = numel(U) / 2;

381 for i = 1: num_nodes

382 node_idx = ceil(i);

383

384 % Display x component of displacement

385 fprintf('Node %dx: %s\n', node_idx , U{2*i - 1});

386

387 % Display y component of displacement

388 fprintf('Node %dy: %s\n', node_idx , U{2*i});

389 end

390

391 % Initialize the numeric array

392 U_numeric = zeros(size(U));

393

394 % Loop through each element in the cell array

395 for i = 1: numel(U)

396 % Check if it's a numeric value or a cell

397 if isnumeric(U{i})

398 U_numeric(i) = U{i};

399 elseif iscell(U{i})

400 % Assuming there 's only one element in the cell

401 inner_value = U{i}{1};

402

403 if isnumeric(inner_value)

404 U_numeric(i) = inner_value;

405 else

406 % Convert the string representation to a numeric value

407 numeric_str = regexprep(inner_value , '[^\d.eE+-]', '');
408 U_numeric(i) = str2double(numeric_str);

409 end

410 end

411 end

412

413 % Now , U_numeric should correctly represent numeric values

414

415 % Get unkonw forces with F = K*U

416 F = K*U_numeric;
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417

418

419 % Define threshold for values close to zero

420 threshold = 1e-10;

421

422 % Define the unknown forces cell array

423 unknown_forces = cell(num_nodes , 2);

424

425 % Loop through each node to display and save the unknown forces

426 fprintf('The F global nodal force vector is:\n');
427 for node_idx = 1: num_nodes

428 force_x = F(2 * node_idx - 1);

429 force_y = F(2 * node_idx);

430

431 % Check if the values are close to zero and set them to zero

432 if abs(force_x) < threshold

433 force_x = 0;

434 end

435 if abs(force_y) < threshold

436 force_y = 0;

437 end

438

439 % Display and save the values to the workspace

440 fprintf('F%dx = %.4f\n', node_idx , force_x);

441 fprintf('F%dy = %.4f\n', node_idx , force_y);

442

443 % Create variables with the respective results and save them to the

workspace

444 variable_name_x = ['F' num2str(node_idx) 'x'];
445 variable_name_y = ['F' num2str(node_idx) 'y'];
446 assignin('base', variable_name_x , force_x);

447 assignin('base', variable_name_y , force_y);

448

449 % Store the values in the unknown_forces cell array

450 unknown_forces{node_idx , 1} = variable_name_x;

451 unknown_forces{node_idx , 2} = variable_name_y;

452 end

453

454 % Now you have displayed , saved , and stored the unknown forces

455

456 % Loop through each node to display and save the unknown displacements

457 fprintf('The U global nodal displacement vector is:\n');
458 for node_idx = 1: num_nodes

459 disp_x = U_numeric (2 * node_idx - 1);

460 disp_y = U_numeric (2 * node_idx);
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461

462 % Display and save the values to the workspace

463 fprintf('U%dx = %.4e\n', node_idx , disp_x);

464 fprintf('U%dy = %.4e\n', node_idx , disp_y);

465

466 % Create variables with the respective results and save them to the

workspace

467 variable_name_x = ['U' num2str(node_idx) 'x'];
468 variable_name_y = ['U' num2str(node_idx) 'y'];
469 assignin('base', variable_name_x , disp_x);

470 assignin('base', variable_name_y , disp_y);

471

472 % Store the values in the unknown_disps cell array

473 unknown_disps{node_idx , 1} = variable_name_x;

474 unknown_disps{node_idx , 2} = variable_name_y; %#ok <*SAGROW >

475 end

476

477

478 % Find the stresses in each element setting the nodal displacement vectors

479 % to calculate the stresses sigman

480

481 % We already have the number of elements in the variable in num_elements

482 % Create nodal displacement vectors for each element

483

484 disp('The element nodal displacement vectors are: ');
485 % Determine the number of rows in element_connectivity

486 num_rows = size(element_connectivity , 1);

487

488 % Initialize a cell array to store the u vectors for each row

489 u_cell = cell(1, num_rows);

490

491 % Iterate through each row of element_connectivity

492 for row_to_extract = 1: num_rows

493 % Extract the node numbers for the current row

494 nodes = element_connectivity(row_to_extract , :);

495

496 % Initialize the u vector for the current row

497 u_row = zeros(2 * numel(nodes), 1);

498

499 % Construct the variable names and populate u_row

500 for i = 1: numel(nodes)

501 node_number = nodes(i);

502 % Construct the variable names based on node_number (e.g., U1x ,

U1y , U2x , U2y , etc.)

503 variable_name_x = ['U', num2str(node_number), 'x'];
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504 variable_name_y = ['U', num2str(node_number), 'y'];
505 % Get the values from the workspace

506 u_x = evalin('base', variable_name_x);

507 u_y = evalin('base', variable_name_y);

508 % Assign the values to u_row

509 u_row(2 * i - 1) = u_x;

510 u_row(2 * i) = u_y;

511 end

512

513 % Store the u vector for the current row in the cell array

514 u_cell{row_to_extract} = u_row;

515

516 % Assign u_row to individual variables (u1,u2,etc.)

517 assignin('base',['u',num2str(row_to_extract)], u_row);

518

519 % Display the u vector for the current row

520 disp(['u', num2str(row_to_extract), ':']);
521 disp(u_row);

522 end

523 % Now you have individual variables for each element nodal displacement

524 % vector

525 % Obtain the element stress vector for each element

526 syms xi eta;

527 a = (y1*(xi -1)+y2*(-1-xi)+y3*(1+xi)+y4*(1-xi))/4;

528 b = (y1*(eta -1)+y2*(1-eta)+y3*(1+ eta)+y4*(-1-eta))/4;

529 c = (x1*(eta -1)+x2*(1-eta)+x3*(1+ eta)+x4*(-1-eta))/4;

530 d = (x1*(xi -1)+x2*(-1-xi)+x3*(1+xi)+x4*(1-xi))/4;

531 B1 = [a*(eta -1)/4-b*(xi -1)/4 0 ; 0 c*(xi -1)/4-d*(eta -1)/4 ;

532 c*(xi -1)/4-d*(eta -1)/4 a*(eta -1)/4-b*(xi -1) /4];

533 B2 = [a*(1-eta)/4-b*(-1-xi)/4 0 ; 0 c*(-1-xi)/4-d*(1-eta)/4 ;

534 c*(-1-xi)/4-d*(1-eta)/4 a*(1-eta)/4-b*(-1-xi)/4];

535 B3 = [a*(eta +1)/4-b*(xi+1)/4 0 ; 0 c*(xi+1)/4-d*(eta +1)/4 ;

536 c*(xi+1)/4-d*(eta+1)/4 a*(eta+1)/4-b*(xi+1) /4];

537 B4 = [a*(-1-eta)/4-b*(1-xi)/4 0 ; 0 c*(1-xi)/4-d*(-1-eta)/4 ;

538 c*(1-xi)/4-d*(-1-eta)/4 a*(-1-eta)/4-b*(1-xi)/4];

539 Bfirst = [B1 B2 B3 B4];

540 Jfirst = [0 1-eta eta -xi xi -1 ; eta -1 0 xi+1 -xi -eta ;

541 xi -eta -xi -1 0 eta+1 ; 1-xi xi+eta -eta -1 0];

542 J = [x1 x2 x3 x4]* Jfirst *[y1 ; y2 ; y3 ; y4]/8;

543 B = Bfirst/J;

544 if strcmpi(problem_type , 'Plane Stress ')
545 D = (E/(1-nu*nu))*[1, nu , 0 ; nu , 1, 0 ; 0, 0, (1-nu)/2];

546 elseif strcmpi(problem_type , 'Plane Strain ')
547 D = (E/(1+nu)/(1-2*nu))*[1-nu , nu, 0 ; nu, 1-nu, 0 ; 0, 0, (1-2*nu)/2];

548 end
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549

550 %%

551 tolerance = 1e-10;

552 for i = 1: num_rows

553 % Create variable names like 'u1 ', 'u2', etc.

554 u_name = ['u' num2str(i)];

555

556 % Check if the variable exists in the workspace

557 if evalin('base', ['exist(''' u_name ''', ''var'')'])
558 % If the variable exists , assign it to 'u' and calculate 'wcent '
559 u = evalin('base', u_name);

560 w = D * B * u;

561

562 % Calculate and save the result in sigma1 , sigma2 , etc.

563 wcent = subs(w, {xi , eta}, {0, 0});

564 sigma_name = ['sigma ' num2str(i)];

565 assignin('base', sigma_name , double(wcent));

566 sigma_values = double(wcent);

567

568 % Round values close to zero to zero

569 sigma_values(abs(sigma_values) < tolerance) = 0;

570

571 % Create variables for sigma_x , sigma_y , and tau_xy

572 sigma_x = sigma_values (1);

573 sigma_y = sigma_values (2);

574 tau_xy = sigma_values (3);

575

576 % Display the variable names and values

577 disp(['For ' u_name ':']);
578 disp(['sigma_x = ' num2str(sigma_x)]);

579 disp(['sigma_y = ' num2str(sigma_y)]);

580 disp(['tau_xy = ' num2str(tau_xy)]);

581 else

582 disp(['Variable ' u_name ' not found in the workspace.']);
583 end

584 end

585

586 % Calculate the principal stresses and principal angle for each element

587 for i = 1: num_rows

588 % Create variable names like 'sigma1 ', 'sigma2 ', etc.

589 sigma_name = ['sigma ' num2str(i)];

590

591 % Check if the variable exists in the workspace

592 if evalin('base', ['exist(''' sigma_name ''', ''var'')'])
593 % If the variable exists , retrieve its value
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594 sigma = evalin('base', sigma_name);

595

596 % Calculate principal stresses and angle using the function

597 principal_results = BilinearQuadElementPStresses(sigma);

598

599 % Round values close to zero to zero

600 principal_results(abs(principal_results) < tolerance) = 0;

601

602 % Save the results in variables s1, s2, theta , etc.

603 s1 = principal_results (1);

604 s2 = principal_results (2);

605 theta = principal_results (3);

606

607 % Check if the absolute value is less than the tolerance

608 if abs(s1) < tolerance

609 s1 = 0;

610 end

611 if abs(s2) < tolerance

612 s2 = 0;

613 end

614 if abs(theta) < tolerance

615 theta = 0;

616 end

617

618 % Display the results

619 disp(['Principal Stresses for ' sigma_name ':']);
620 disp(['s1 = ' num2str(s1)]);

621 disp(['s2 = ' num2str(s2)]);

622 disp(['Theta = ' num2str(theta)]);

623 else

624 disp(['Variable ' sigma_name ' not found in the workspace.']);
625 end

626 end

627

628 % Define a function to assemble the element stiffness matrix k into the

global stiffness matrix K

629 function K = assembleStiffness(K, k, i, j, m, n)

630 % Update the global stiffness matrix using element stiffness matrix k

631 K(2*i-1,2*i-1) = K(2*i-1,2*i-1) + k(1,1);

632 K(2*i-1,2*i) = K(2*i-1,2*i) + k(1,2);

633 K(2*i-1,2*j-1) = K(2*i-1,2*j-1) + k(1,3);

634 K(2*i-1,2*j) = K(2*i-1,2*j) + k(1,4);

635 K(2*i-1,2*m-1) = K(2*i-1,2*m-1) + k(1,5);

636 K(2*i-1,2*m) = K(2*i-1,2*m) + k(1,6);

637 K(2*i-1,2*n-1) = K(2*i-1,2*n-1) + k(1,7);
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638 K(2*i-1,2*n) = K(2*i-1,2*n) + k(1,8);

639 K(2*i,2*i-1) = K(2*i,2*i-1) + k(2,1);

640 K(2*i,2*i) = K(2*i,2*i) + k(2,2);

641 K(2*i,2*j-1) = K(2*i,2*j-1) + k(2,3);

642 K(2*i,2*j) = K(2*i,2*j) + k(2,4);

643 K(2*i,2*m-1) = K(2*i,2*m-1) + k(2,5);

644 K(2*i,2*m) = K(2*i,2*m) + k(2,6);

645 K(2*i,2*n-1) = K(2*i,2*n-1) + k(2,7);

646 K(2*i,2*n) = K(2*i,2*n) + k(2,8);

647 K(2*j-1,2*i-1) = K(2*j-1,2*i-1) + k(3,1);

648 K(2*j-1,2*i) = K(2*j-1,2*i) + k(3,2);

649 K(2*j-1,2*j-1) = K(2*j-1,2*j-1) + k(3,3);

650 K(2*j-1,2*j) = K(2*j-1,2*j) + k(3,4);

651 K(2*j-1,2*m-1) = K(2*j-1,2*m-1) + k(3,5);

652 K(2*j-1,2*m) = K(2*j-1,2*m) + k(3,6);

653 K(2*j-1,2*n-1) = K(2*j-1,2*n-1) + k(3,7);

654 K(2*j-1,2*n) = K(2*j-1,2*n) + k(3,8);

655 K(2*j,2*i-1) = K(2*j,2*i-1) + k(4,1);

656 K(2*j,2*i) = K(2*j,2*i) + k(4,2);

657 K(2*j,2*j-1) = K(2*j,2*j-1) + k(4,3);

658 K(2*j,2*j) = K(2*j,2*j) + k(4,4);

659 K(2*j,2*m-1) = K(2*j,2*m-1) + k(4,5);

660 K(2*j,2*m) = K(2*j,2*m) + k(4,6);

661 K(2*j,2*n-1) = K(2*j,2*n-1) + k(4,7);

662 K(2*j,2*n) = K(2*j,2*n) + k(4,8);

663 K(2*m-1,2*i-1) = K(2*m-1,2*i-1) + k(5,1);

664 K(2*m-1,2*i) = K(2*m-1,2*i) + k(5,2);

665 K(2*m-1,2*j-1) = K(2*m-1,2*j-1) + k(5,3);

666 K(2*m-1,2*j) = K(2*m-1,2*j) + k(5,4);

667 K(2*m-1,2*m-1) = K(2*m-1,2*m-1) + k(5,5);

668 K(2*m-1,2*m) = K(2*m-1,2*m) + k(5,6);

669 K(2*m-1,2*n-1) = K(2*m-1,2*n-1) + k(5,7);

670 K(2*m-1,2*n) = K(2*m-1,2*n) + k(5,8);

671 K(2*m,2*i-1) = K(2*m,2*i-1) + k(6,1);

672 K(2*m,2*i) = K(2*m,2*i) + k(6,2);

673 K(2*m,2*j-1) = K(2*m,2*j-1) + k(6,3);

674 K(2*m,2*j) = K(2*m,2*j) + k(6,4);

675 K(2*m,2*m-1) = K(2*m,2*m-1) + k(6,5);

676 K(2*m,2*m) = K(2*m,2*m) + k(6,6);

677 K(2*m,2*n-1) = K(2*m,2*n-1) + k(6,7);

678 K(2*m,2*n) = K(2*m,2*n) + k(6,8);

679 K(2*n-1,2*i-1) = K(2*n-1,2*i-1) + k(7,1);

680 K(2*n-1,2*i) = K(2*n-1,2*i) + k(7,2);

681 K(2*n-1,2*j-1) = K(2*n-1,2*j-1) + k(7,3);

682 K(2*n-1,2*j) = K(2*n-1,2*j) + k(7,4);
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683 K(2*n-1,2*m-1) = K(2*n-1,2*m-1) + k(7,5);

684 K(2*n-1,2*m) = K(2*n-1,2*m) + k(7,6);

685 K(2*n-1,2*n-1) = K(2*n-1,2*n-1) + k(7,7);

686 K(2*n-1,2*n) = K(2*n-1,2*n) + k(7,8);

687 K(2*n,2*i-1) = K(2*n,2*i-1) + k(8,1);

688 K(2*n,2*i) = K(2*n,2*i) + k(8,2);

689 K(2*n,2*j-1) = K(2*n,2*j-1) + k(8,3);

690 K(2*n,2*j) = K(2*n,2*j) + k(8,4);

691 K(2*n,2*m-1) = K(2*n,2*m-1) + k(8,5);

692 K(2*n,2*m) = K(2*n,2*m) + k(8,6);

693 K(2*n,2*n-1) = K(2*n,2*n-1) + k(8,7);

694 K(2*n,2*n) = K(2*n,2*n) + k(8,8);

695 y = K;

696 end

697

698 % This function returns the element principal stresses and their angle

given the element stress vector.

699 function y = BilinearQuadElementPStresses(sigma)

700 R = (sigma (1) + sigma (2))/2;

701 Q = ((sigma (1) - sigma (2))/2)^2 + sigma (3)*sigma (3);

702 M = 2*sigma (3)/(sigma (1) - sigma (2));

703 s1 = R + sqrt(Q);

704 s2 = R - sqrt(Q);

705 theta = (atan(M)/2) *180/ pi;

706 y = [s1 ; s2 ; theta ];

707 end
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